| Name |  |
|------|--|
|      |  |

233/2 CHEMISTRY PAPER 2 THEORY

TIME: 2 HOURS

## **INSTRUCTIONS TO CANDIDATES**

- Write your name and Index number in spaces provided above.
- Sign and write the date of examination in the spaces provided above
- Answer all the questions in the spaces provided above.
- KNEC Mathematical tables and silent electronic calculators may be used.
- All working must be clearly shown where necessary.
- Candidates should answer the questions in English.

| Question    | Maximum score | Candidate's score |  |  |  |  |  |  |
|-------------|---------------|-------------------|--|--|--|--|--|--|
| 1           | 13            |                   |  |  |  |  |  |  |
| 2           | 11            |                   |  |  |  |  |  |  |
| 3           | 12            |                   |  |  |  |  |  |  |
| 4           | 09            |                   |  |  |  |  |  |  |
| 5           | 11            |                   |  |  |  |  |  |  |
| 6           | 10            |                   |  |  |  |  |  |  |
| 7           | 14            |                   |  |  |  |  |  |  |
| Total score | 80            |                   |  |  |  |  |  |  |

## For Examiners Use Only

This paper consists of 8 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. (a) The grid given below represents part of the periodic table. Study it and answer the questions that follow. (*The letters do not represent the actual symbols of elements* )

| Α |   |   | E |   | Η |   |
|---|---|---|---|---|---|---|
|   | С | D |   | G |   | K |
| В |   |   | F |   | J |   |

(i) Giving reasons, select the element which is

|       | I. Most reactive non metal                                                                                          | (2mks) |
|-------|---------------------------------------------------------------------------------------------------------------------|--------|
|       |                                                                                                                     |        |
|       | II. Most reactive metal                                                                                             | (2mks) |
| (ii)  | How does reactivity of <b>A</b> compare with that of <b>B</b> . Explain                                             | (1mk)  |
| (iii) | Explain why the atomic radius of ${f K}$ is smaller than that of ${f G}$                                            | (1mk)  |
| (iv)  | An element <b>W</b> forms ion $\mathbf{W}^{2}$ , if w is in period 3, indicate the position of <b>W</b> on the grid | (1mk)  |
| (v)   | Write the formula of the compound formed when C reacts with H                                                       | (1mk)  |

| (b) Study the | information in | the table b | below and | answer t | the questions | that follow |
|---------------|----------------|-------------|-----------|----------|---------------|-------------|
|---------------|----------------|-------------|-----------|----------|---------------|-------------|

| Substance          | M.P(°C)      | B.P(°C)        | Electrical conductivity   |                  | Solubility in |
|--------------------|--------------|----------------|---------------------------|------------------|---------------|
|                    |              |                |                           |                  | water         |
|                    |              |                | In solid state            | In molten state  |               |
| Р                  | 714          | 1418           | Does not conduct          | Conducts         | Very soluble  |
| Q                  | -95          | 56             | Does not conduct          | Conducts         | Insoluble     |
| R                  | 1083         | 2580           | Conducts                  | Conducts         | Insoluble     |
| S                  | -101         | -34            | Does not conduct          | Does not conduct | Very soluble  |
| U                  | -23          | 77             | Does not conduct          | Does not conduct | Soluble       |
| V                  | -219         | -183           | Does not conduct          | does not conduct | Insoluble     |
| W                  | 1560         | 2600           | Does not conduct          | does not conduct | Insoluble     |
| (i) Name <b>tw</b> | o substances | s which are ga | seous at room temperature |                  | (1mk)         |

(ii) Select the substance that could be dissolved in water and be separated from the solution by Fractional distillation (1mk)
 (iii) Which substance could be an electrolyte? (1mk)

.....

(iv) Element U has low M.P and B.P whereas W has high M.P and B.P. Explain (2mks)

.....

2. (a)The diagram below shows part of the processes in the manufacture of Nitric (V) acid



What is the work of the purifier (1mk)

(i)

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Mob: 0734579299 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at www.schoolsnetkenya.com

| (ii)  | State the pressure used in the compressor        | (1mk) |
|-------|--------------------------------------------------|-------|
| (iii) | State <b>two</b> functions of the heat exchanger | (1mk) |
|       |                                                  |       |
| (iv)  | Name the catalyst used in the catalytic chamber  | (1mk) |
|       |                                                  |       |

## (v) Write equation of the reaction that takes place in:

| I.      | Catalytic chamber                                                                   | (1mk)       |
|---------|-------------------------------------------------------------------------------------|-------------|
| <br>II. | Reaction chamber                                                                    | (1mk)       |
| III.    | Absorption tower                                                                    | (1mk)       |
| (b)     | (i) Calculate the volume of Oxygen that would be obtained from the decomposition of | f 21.25g of |
|         | Sodium Nitrate at s.t.p (1 mole of a gas occupies 22.4dm3 at stp, N=14, Na=23, O    | =10) (3mks) |

| (c) Name <b>two</b> commercial uses of Nitric (V) acid | (2mks) |
|--------------------------------------------------------|--------|
|                                                        |        |
|                                                        |        |
|                                                        |        |

3. (a) The diagram below shows a set-up used to determine the standard electrode potential  $(E^{\theta})$  of Zinc



(b) Study the standard electrode potentials given below and answer the questions that follow.

The letters do not represent the actual symbols of the elements

|            | Half reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Electrode potential $E^{\theta} V$                         |         |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|
|            | $P^+_{(aq)} + e$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2.92                                                      |         |
|            | $R^{3+}_{(aq)}+3e-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.35                                                      |         |
|            | $S^{2+}_{(aq)}+2e \Sigma_{(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.76                                                      |         |
|            | $T^{2+}_{(ac)} + 2e^{-} \sum_{T(c)} T_{(c)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +0.34                                                      |         |
|            | $\frac{1}{1} \frac{1}{1} \frac{1}$ | +0.80                                                      |         |
|            | $V_{(aq)} + e$ - $V_{(s)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +1.36                                                      |         |
|            | $W_{2(g)}+2e$ $2W_{-(aq)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |         |
| (1)        | which is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |         |
| I.         | Strongest reducing agent. Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1mk)                                                      | )       |
| ••••       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |         |
| II.        | Strongest oxidizing agent. Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1mk)                                                      | )       |
| ••••       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | •       |
| (ii) Calcu | late the e.m.f of a cell made by metals $\mathbf{S}$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>V</b> (1mk)                                             |         |
| ••••       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | •       |
| (c)        | During electrolysis of an aqueous solution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of a salt of metal <b>Q</b> , a current of 2.0A was passed |         |
| for        | 32 minutes and 10 seconds. The mass of me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | etal <b>Q</b> deposited was 2.24g                          |         |
| (1         | Faraday=96500c, RAM of $Q=112$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |         |
| (i)        | Calculate the quantity of electricity passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ()mb                                                       | с)      |
| (1)        | Carculate the quantity of electricity passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            | <i></i> |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |         |

(ii) Calculate the charge carried on the ion of metal  $\mathbf{Q}$  (2mks)

(a) In an experiment to study the rate of a reaction, 2.0g of Manganese (IV) oxide was added to 100cm<sup>3</sup> of hydrogen peroxide solution at 25°C. The volume of oxygen released was measured at 10 seconds intervals. The results obtained are tabulated below

| Time                                                                                | 0 | 10 | 20 | 30  | 40  | 50  | 60  | 70  | 80   | 90  |
|-------------------------------------------------------------------------------------|---|----|----|-----|-----|-----|-----|-----|------|-----|
| (SEC)                                                                               |   |    |    |     |     |     |     |     |      |     |
| Volume (cm <sup>3</sup> )                                                           | 0 | 60 | 90 | 105 | 112 | 116 | 118 | 120 | 120  | 120 |
| (i)Plot a graph of volume of gas (vertical axis) against time and label it X (3mks) |   |    |    |     |     |     |     |     | nks) |     |



(ii) Use the graph to find:

I. The volume of gas produced after 25 seconds (1mk)

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Mob: 0734579299 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

| II. The time taken to produce 80cm <sup>3</sup> of oxygen                                                                                                                                                                                           | (1mk)            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| (iii) Explain why the volume of oxygen produced does not exceed 120cm3                                                                                                                                                                              | (1mk)            |
| (iv) Sketch a graph Y, on the same grid to show the results if the experiment was repeated using hydrogen peroxide at 10°C. Explain                                                                                                                 | d<br>(2mks)      |
| (v) The mass of the solid residue after the experiment was found to be 2.0g when dried.                                                                                                                                                             | Explain<br>(1mk) |
| <ul> <li>(a) The figure shows the extraction of Aluminium from bauxite</li> <li>-ve</li> <li>Steel trough <ul> <li>a</li> <li>b</li> <li>c</li> <li>c</li> <li>c</li> <li>c</li> <li>c</li> <li>c</li> <li>c</li> </ul> </li> <li>(1 mk)</li> </ul> |                  |
| (ii) How is the ore (bauxite) concentrated before it is electrolysed                                                                                                                                                                                | (1mk)            |

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Mob: 0734579299 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u> (iii) Identify;

|          | I.     | Product A                                                                                                   |        | (1mk)      |
|----------|--------|-------------------------------------------------------------------------------------------------------------|--------|------------|
|          | II.    | Electrolyte <b>B</b>                                                                                        | (1mk)  |            |
|          | III.   | Material used to make electrode C                                                                           |        | (1mk)      |
| (b) Wh   | nat is | the purpose of dissolving electrolyte <b>B</b> in molten cyrolite (Na <sub>3</sub> AlF <sub>6</sub> ) (1mk) |        |            |
| (c) Exj  | plain  | why anode has to be replaced from time to time                                                              | (1mk)  |            |
| (d) Wr   | ite th | e reaction for the chemical reaction that take place when aluminium reacts with Iron (<br>Oxide             | (III)  | (1mk)      |
| (e) Stat | te an  | y <b>two</b> uses of Aluminium                                                                              | (2mks) |            |
| 6.       | (a) ]  | Differentiate between lattice energy and hydration energy                                                   |        | <br>(2mks) |
|          |        |                                                                                                             |        |            |

(b) Use the values given in the table below to answer the questions that follow

| Ion              | Enthalpy of hydration DH <sub>hyd</sub> .(KJMol <sup>-1</sup> ) |
|------------------|-----------------------------------------------------------------|
| Mg <sup>2+</sup> | -1891                                                           |
| CI.              | -384                                                            |

|      | Given that lattice energy of MgCl <sub>2</sub> is -2489 KJ/Mol                                  |            |
|------|-------------------------------------------------------------------------------------------------|------------|
| (i)  | Draw an energy cycle diagram for dissolving Magnesium in water (3mk                             | (s)        |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
| (ii) | Use your energy cycle diagram above to calculate the enthalpy of solution of Magnesium chloride | (2mks)     |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
|      | (b) (i) Define fuel                                                                             | (1mk)      |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
|      | (ii) Given that heat of combustion of S is 296.8KJ/Mol, Determine the heating value             | of S(S=32) |
|      |                                                                                                 | (2mks)     |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
| _    |                                                                                                 |            |
| 7.   | (a) Give the systematic names for following compounds;                                          |            |
| (i)  | $CH_3CH_2CH_2CH_2OH$ (1mk                                                                       | ()         |
|      |                                                                                                 |            |
|      |                                                                                                 |            |
| (ii) | $CH_3CH_2C - O - CH_2CH_3 \tag{1mk}$                                                            | <b>(</b> ) |
|      |                                                                                                 |            |

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Nairobi | Mob: 0734579299 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u> .....

(b) Study the flow chart below and use it to answer the question that follow



(i) Name:

| Substance A        | (1mk)             |
|--------------------|-------------------|
| Process I          | (1mk)             |
| Substance <b>B</b> | (1mk)             |
| Gas C              | (1mk)             |
| Substance <b>D</b> | (1mk)             |
| Compound E         | (1mk)             |
|                    | ••••••••••••••••• |

| (ii) Identify the type of Polymerization that results to the formation of compound E                                                                                            | (1mk)       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (iii) If one mole of sugar, $C_6H_{12}O_6$ produces two molecules of pure ethanol, $C_2H_5O_6$ and two moles of carbon (IV) oxide gas as the only product:                      | ł           |
| I. Write an equation for the reaction (1w) oxide gas as the only product, (1mk)                                                                                                 |             |
| II. If 144kg of sugar (C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> ) was used to produce ethanol in this process, calcula<br>in kg of ethanol produced (C = 12 H = 1, O = 16) | te the mass |