ACIDS BASES AND SALTS MARKING SCHEME

3.

1. Aluminium chloride hydrolyses in water to form an acidic solution as shown by the equations below $\checkmark~1$

 $\begin{aligned} Alcl_{3(s)} + 6H_2O_l & \rightarrow \qquad [Al(H_2O)_6]_{(aq)}^{3+} + 3cl^{-}_{(aq)} \\ [Al(H_2O)_6]_{aq}^{3+} & \rightarrow \qquad [Al(H_2O)_5OH]_{aq}^{2+} + H_{aq}^{+} \\ \end{aligned}$ The presence of the H⁺_{aq} ions in the solution makes

The presence of the H^+_{aq} ions in the solution makes it acidic $\checkmark 1$ N/B: The equations may or may not be given

- 2. Because ethanoic acid is a weak acid while hydrochloric acid is a strong acid. HCl fully ionized while ethanoic partially ionised $\checkmark \frac{1}{2}$
 - a) $Fe^{3+} \checkmark 1$ b) It is an oxidizing agent $\checkmark 1$ Heat c) $2Fe(OH)_{3(s)} \longrightarrow Fe_2O_{3(s)} + 3H_2O_{(1)} \checkmark (1)$

4. 20 cm^3 of water contains 7.5g of solute

100 cm 3 of water contains -

$$\frac{-\frac{7.5 \times 100}{20}}{=37.5 g \text{ of solute}/100 g \text{ of water}} \checkmark 1$$

5. Hydrochloric acid solution is completely dissociated giving a high concentration of

- $\rm H^{\scriptscriptstyle +}\,$ (1mk) while ethanoic acid is only partially dissociated being a weak acid. (1mk)
- 6.(a) 20g water \geq 7.5g solute

$$\begin{array}{ll} \therefore 100 \text{g water} \geq \frac{100}{75} \times 7.5 g = 37.5 g \qquad (1\text{mk}) \\ \therefore \text{ Solubility of solute } = 37.5 \text{g} / 100 \text{g water} \ (1\text{mk}) \\ \text{(b) Presence of } MgSO_{4(aq)} \quad and \quad CaSO_{4(aq)} \qquad (1\text{mk}) \end{array}$$

7. Acid is H_2O (1mk) Base : NH_3 (1mk) Reason : H_2O donates H^+ to NH_3 in the reaction, (1mk) 8.

- (a) X
- (b)
- (i) It removes temperary hardness (Soften the water) by composing the $Ca(HCO_3)_2$ or $Mg(HCO_3)_2$ (1mk) thus removing

 $Mg_{(aa)}^{2+}$ or $Ca_{(aa)}^{2+}$ for water

(ii) No significant effect because permanent hardness (due to presence of Mg so₄ of $CaSO_4$) can not be boiling of the water (1mark)

10. The pH value of the hydrochloric acid is lower than that of ethanoic a) acid Hydrochloric acid is a strong acid whereas ethanoic acid is a weak acid pH of ethanoic acid is 4 to 6 $(\frac{1}{2})$ b) pH of hydrochloric acid is 1 to 3

11. H₂O¹ ½ It accepts a proton to form H_3O^+ 1 $\frac{1}{2}$

12. (a) (i) No
$${}_{3}\mathbb{I}^{1}$$
 (ii) Pb²⁺ \mathbb{I}^{1}
(b) Pb (NO)₂(aq) + 2HCl_(aq) PbCl_{2(s)} + 2HNO_{3(aq)} \mathbb{I}^{1}
Penalize ½ for wrong symbols

(a) Sample III had temporary hardness¹¹ which was removed by¹¹ boiling so 13. it require less soap I $\frac{1}{2}$ tan before when it was hard. I $\frac{1}{2}$ (

(b)
$$Mg^{2^+(aq)}$$
, $SO^{2^-}_{4(aq)}$, or $Ca^{2^+(aq)}$, $SO^{2^-}_{4^-}$

14. 155 -310
$$\frac{1}{2}$$
 = 124 g0 $\frac{1}{2}$ in 100g water
In 50g of water = $\frac{124}{2}$ 0^{1/2} = 62g 0 $\frac{1}{2}$

15. Strong acid is one which dissociates $\checkmark\,$ 1 completely when dissolved in water while concentrated acid is one which contain little or no water. $\checkmark1$

16.	a) $CH_3(CH_2)_{15} SO_3^- Na + \checkmark 1$ It does not form scum with hard water. b) It provides essential (Ca ²⁺) ions for bone & teeth formation
17.	 a) The negative Power of hydrogen ion concentration√1 b) (i) Substance with pH value less than 7√1 (ii) Substance with pH value greater than 7√1
18.	 a) i) Blue precipitate formed ✓1 (pale blue) ii) Deep blue solution formed ✓1 b) [Cu(NH₃)₄]²⁺ ✓1
19.	a) Water which does not readily form lather with soap $\checkmark 1$ b) $Ca^{2+} \checkmark \frac{1}{2}$ and $Mg^{2+} \checkmark \frac{1}{2}$ c) $Na_2X_{(s)} + Ca^{2+}_{(aq)} \longrightarrow CaX_{(s)} + 2Na^+_{(aq)}$ or $Na_2X_{(s)} + Mg^{2+}_{(aq)} \longrightarrow MgX_{(s)} + 2Na^+_{(aq)}$ (Any 1 x 1mk)

20. a)

b) i) P at 25° C = $30g \checkmark 1$ ii) 33° C c) i) Solubility of 40° C is 61g/100g water $\therefore 35g$ temperature is 28° C \checkmark ii) At 5° C the solubility is $10g \checkmark \frac{1}{2}$ The mass is $35g - 10g = 25g \checkmark \frac{1}{2}$ d) 100g at 50° C solubility is $46g \qquad \sqrt{1}$ $\therefore 80g$ at 50° C the solubility will be $\frac{46 \times 80}{100} = 36.8g \checkmark 1$ 6. b) i) M - 30.5 (± 1) g / 100g of water ✓ 1 *Kyo*

N - 36.5 (± 1) g / 100g of water \checkmark 1

- ii) 60.5 (± 1) ✓ 1
- c) 60 20.7 \checkmark $\frac{1}{2}$ = 39.3 \checkmark $\frac{1}{2}$
- c) 13g of m will crystallise ✓ 1 Salt N will be in solution ✓ 1 Solubility of M is lower than the mass dissolved while N is higher than the mass ✓ 1 dissolved
- d) Extraction of metals ✓ 1
 Fractional crystallization of salts ✓ 1