Gas laws

- 1. X: $t_1 = 28.3 \sec$ $Q_2: t_2 = 20.0 \sec$ $T \propto \qquad MM \qquad \checkmark$ $T \propto \qquad MM \qquad \checkmark$ $\frac{T_1}{T_2} = \sqrt{\frac{X}{32}}$ $\left(\frac{T_1}{T_2}\right)^2 = \frac{X}{32}$ $\left(\frac{28.3}{T_2}\right)^2 = \frac{X}{32}$ $X = \frac{28.3^2 \times 32}{400}$ $X = 64 \qquad \checkmark$
- 2. (a) The rate of diffusion of a gas is inversely proportional to the square root of its density under the same conditions of temperature and pressure

(b) Rate of gas
$$V = \frac{1}{5} \times \frac{100 \text{ cm}}{10 \text{ sec}}$$

$$= 2 \text{ cm/sec} \quad \sqrt{\frac{1}{2}}$$
Rate of $W = \frac{10 \text{ cm}}{10 \text{ sec}}$

$$= 1 \text{ cm/sec} \quad \sqrt{\frac{1}{2}}$$

$$\frac{RV}{RW} = \boxed{\frac{MW}{MV}}$$

$$= \frac{2}{1} = \boxed{\frac{MW}{16}}$$

$$\frac{2}{1}^{2} = \boxed{\frac{MW}{16}}$$

$$\frac{1}{1} = \boxed{\frac{1}{16}}$$

$$\frac{4}{1} = \boxed{\frac{MW}{16}}$$

$$\frac{1}{16} = \frac{4}{1}$$

$$MW = 64$$

3. (a) The volume of a fixed mass of a gas is directly proportional to its absolute temperature at constant Pressure

(b) Apply combined gas law;
$$\underline{P_1V_1} = \underline{P_2V_2}$$

 T_1 T_2
 $V_1 = 3.5 \times 10^{-2} \text{ m}^3 \quad V_2 = 2.8 \times 10^{-2} \text{m}^3$
 $P_1 = 1.0 \times 10^5 \text{Pa} \quad P_2 = 1.0 \times 105 \text{Pa}$
 $T_1 = 291 \text{K} \quad T_2 = ?$
 $T_2 = \underline{P_2V_2T_1}$
 P_1V_1
 $T_2 = 1.0 \times 10^5 \text{Pa} \times 2.8 \times 10^{-2} \text{m}^3 \times 291 \text{K}$

$$1.0 \times 10^5$$
Pa x $3.5 \times 10^{-2}m^3$
 $T_2 = 232.8k \checkmark$

- 4. $\frac{TsO_2}{TO_2} = \frac{R.M.N.SO_2}{R.M.MO_2} D^{1/2}$ $SO_2 = 32 + (16 \times 2) = 64 D^{1/2}$ $O_2 = (16 \times 2) = 32 D^{1/2}$ $\frac{TsO_2}{50} = \sqrt{\frac{64}{32}} D^{1/2} = 70.75 D^{1/2}$
- 5. a) The rate of diffusion of a fixed mass of a gas is inversely proportional to the square root of it density at constant temperature and pressure

b) RHCl =
$$\frac{30 \text{ cm}^3}{20 \text{ se}}$$
 = 1.5 cm³ see
 $\frac{20 \text{ se}}{20 \text{ se}}$
RHCL = $\frac{\sqrt{MSO_2}}{RSO_2}$ = \sqrt{MHCL}
(1.5)² $\sqrt{64}$
RSO₂ = $\sqrt{36.5}$
(RSO₂)² = $\frac{2.25 \times 36.5}{64}$
RSO₂ = $\sqrt{2.25 \times 36.5}$
64
1.133 cm/ sec
1.133 cm³ 1 sec
42 cm³ = $\frac{42 \times 1}{1.133}$
= 37 sec

- 6. a) Boyles' law For a fixed mass of a gas, volume is inversely promotional to pressure at constant temperature
 - b)

7.

c)
$$\underline{P_1V_1} = \underline{P_2V_2} \sqrt{\frac{1}{2}} \quad V_2 = \underline{P_1V_1} \quad X \underline{T_2} \sqrt{\frac{1}{2}} \\ T_1 \quad T_2 \quad T_1 \quad P_2 \\ \underline{250 \ X \ 273 - 23} \\ 273 + 127 \quad \sqrt{\frac{1}{2}} \\ = 156.5 \text{ cm}^3 \\ a) \text{ RFM of } CaCO_3 = 40 + 12 + 48 \\ = 100 \text{ kg}. \sqrt{\frac{1}{2}} \\ \therefore 100 \text{ kg of } CaCO_3 \equiv 22.4 \text{ dm}^3 \text{ of } CO_2(g) \\ 1000 \text{ kg} \quad T \quad P_2 \\ \underline{250 \ X \ 273 - 23} \\ = \underline{22.4 \ x \ 1000} \\ \sqrt{\frac{1}{1}} = 224 \text{ dm}^3 \sqrt{\frac{1}{2}} \\ \end{array}$$

- 8. $T_1 = 23 + 273 = 296$ $T_2 = -25 + 273 = 248$ $V_1 = 200 \text{ cm}^3$ $V_2 = ?$ $P_1 = 740 \text{ mmHg}$ $P_2 = 780 \text{ mmHg}$ $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ $\frac{740 \times 200}{1} \sqrt{1} = \frac{780 \times ?}{248} \sqrt{1}$ 296 248 $\therefore x = \frac{740 \times 200 \times 248}{296 \times 780}$ $= 158.974 \text{ cm}^3 \sqrt{1}$ (penalize ½ mark for units)
- 9. $\underline{Rk} = \sqrt{Ms}$ Rs Mk $\therefore \underline{12} = \sqrt{x}\sqrt{\frac{1}{2}}$ $7.2 \quad 16$ $X = \underline{12^2} \times 16\sqrt{\frac{1}{2}}$ 7.2^2 $= 44.464\sqrt{3}$
- 10. (a) When gases combine they do so in volume which bear a simple ratio to one another and to the product if gaseous under standard temperature and pressure
- 11. a) Rate of diffusion is whereby proportional to molecular mass of a gas. $\sqrt{1}$

b)
$$\frac{TCO_2}{TCO} = \sqrt{\frac{MCO_2}{MCO}}$$

$$\Rightarrow \frac{200}{T} = \sqrt{\frac{44}{28}} = \sqrt{\frac{44}{28}} \frac{11}{7}$$

$$\Rightarrow \frac{200}{T} = \frac{11}{7}$$

$$\Rightarrow T = \sqrt{\frac{7}{11}}$$

⇒ $T = 200.0.79772^{\sqrt{12}} = 159.5$ Seconds. $^{\sqrt{12}}$