CHEMISTRY PAPER 3

KCSE 2011

Coordinated by KENPRO, Macjo Arcade, 4th Floor, Suite 15E, Off Magadi Road, Ongata Rongai |Tel: +254202319748 | E-mail: infosnkenya@gmail.com | Website: <u>www.schoolsnetkenya.com/</u>

3.3.3 Chemistry Paper 3 (233/3)

- 1 You are provided with:
 - 1.60g of solid A, a dibasic acid.
 - Solution B containing 4.75g per litre of salt B.
 - · Aqueous sodium hydroxide, solution C.
 - Phenolphthalein indicator.

You are required to prepare a solution of solid A and use it to determine the:-

- · Concentration of sodium hydroxide, solution C
- React salt B with excess sodium hydroxide and then determine the relative molecular mass of salt B.

Procedure I

- (a) Using a burette, place 25.0cm³ of solution B in each of two 250ml conical flasks. Using a pipette and pipette filler, add 25.0cm³ of solution C to each of the two conical flasks. (The sodium hydroxide added is in excess). Label the conical flasks 1 and 2.
- (b) Heat the contents of the first conical flask to boiling and then let the mixture boil for 5 minutes. Allow the mixture to cool.
- (c) Repeat procedure (b) with the second conical flask.

While the mixtures are cooling, proceed with procedure II.

Procedure II

- (a) Place all of solid A in a 250 ml volumetric flask. Add about 150cm³ of distilled water, shake well to dissolve the solid and then add water to make up to the mark. Label this as solution A.
- (b) Place solution A in a clean burette. Using a pipette and pipette filler, place 25.0cm³ of solution C in a 250ml conical flask. Add 2 drops of phenolphthalein indicator and titrate with solution A. Record your results in Table 1. Repeat the titration two more times and complete the table.

Table 1

10000		I	п	Ш
F	inal burette reading			
In	nitial burette reading			
V	olume of solution A used (cm ³)			
Calcu	ulate the:-			(4 mark
i)	average volume of solution A used:			(<u>/</u> 2 mar
ii)	concentration in moles per litre of the dibasic acid in solution A ; (Relative molecular mass of A is 126).			(2 marks
iii)	moles of the dibasic acid used;			(1 marl
iv)	moles of sodium hydroxide in 25.0cr	m ³ of solution C		(1 mark
v)	concentration of sodium hydroxide in	n molec per litre		(2 marks

Procedure III

Add 2 drops of phenolphalein indicator to the contents of the first conical flask prepared in procedure I and titrate with solution A. Record your results in Table 2. Repeat the procedure with the contents of the second conical flask and complete the table.

Table 2

	1st conical flask	2nd conical flask
Final burette reading		
Initial burette reading		
Volume of solution A used (cm ³)		

Calculate the:-

(i)	average volume of solution A used;	(½ mark)
(ii)	moles of the dibasic acid used;	(1 mark)
(iii)	moles of sodium hydroxide that reacted with the dibasic acid.	(1 mark)

(iv)	moles of sodium hydroxide that reacted with 25.0cm ³	of salt B in solution B ;
------	---	---

(2 marks)

(v)	Gi	ven that 1 mole of salt B reacts with	th 2 moles of sodium hydroxide, calculate the:		
	I.	number of moles of salt B in	25.0 cm ³ of solution B ; (1 mark		
	П.	concentration in moles per litre	of salt B in solution B ; (1 mark)		
	III.	relative molecular mass of salt	B; (2 marks)		
2	(a)	You are provided with solid D . Carry out the following tests and write your observations and inferences in the spaces provided.			
		 Place about one half of solid D in a test-tube and heat it strongly. Test any gase produced with both red and blue litmus papers. 			
		Observations	Inferences		
		(2 marks)	(1 mark)		

 Place the rest of solid **D** in a boiling tube. Add about 10cm³ of distilled water. Shake well.

To a 2cm³ portion of the solution, add about 1cm³ of hydrogen peroxide and shake well. To the resulting mixture, add aqueous sodium hydroxide dropwise until in excess.

Observations	Inferences
(1 mark)	(1 mark)

(b) You are provided with solution E. Carry out the following tests and write your observations and inferences in the spaces provided. Divide solution E into two portions.

To one portion of solution E in a test-tube, add 3 drops of barium nitrate.
 Retain the mixture for use in test (ii) below.

Observations	Inferences
(1 mark)	(2 marks)

(ii) To the mixture obtained in (i) above, add about 5 cm³ of 2M nitric (V) acid.

Observations	Inferences	
(1 mark)	(1 mark)	

- (iii) To portion two of solution E in a test-tube, add 2 drops of acidified potassium dichromate (VI) and warm the mixture.
- 3 You are provided with liquid F. Carry out the following tests and record your observations an inferences in the spaces provided.
 - (a) Place five drops of liquid F on a clean dry watch glass and ignite it.

Observations	Inferences	
(1 mark)	(1 mark)	

(b) Place about 2cm³ of liquid F in a clean dry test-tube, add all the sodium hydrogen carbonate provided.

Observations	Inferences	
(1 mark)	(1 mark)	

(c) Place about 2cm³ of liquid F in a test-tube, add about 1cm³ of acidified potassium dichromate (VI) and warm the mixture.

Observations	Inferences	
(1 mark)	(1 mark)	