CHEMISTRY PAPER 1

ANSWERS

KCSE 2011

Coordinated by KENPRO, Macjo Arcade, 4th Floor, Suite 15E, Off Magadi Road, Ongata Rongai |Tel: +254202319748 | E-mail: infosnkenya@gmail.com | Website: <u>www.schoolsnetkenya.com/</u>

Chemistry Paper 1 (233/1)

			(1 mark)
1.	(a)	Fermentation.	(1
	(b)	Ethane remains in molecular form while ethanol forms hydrogen bonds w	ith water.
	(0)		(2 marks)
			(1 mark)
2.	(a)	_1 ^e	(I main)
	(b)	$50g \rightarrow 25g \rightarrow 12.5g \rightarrow 6.25 \rightarrow 3.125 \rightarrow 1.5625g.$	(1 mark)
	(c)	Instant death, or gene mutation, induce cancer. $$	(1 mark)
3.	•	Heat the mixture to sublime the ammonium chloride. $$	(1 mark)
		Add water to dissolve the sodium chloride $\sqrt{\frac{1}{2}}$; copper (ii) oxide does not	t dissolve
	10.0	Add water to disjon to the company of the	(1 mark)
	•	Filter $\sqrt{1/2}$ and evaporate the filtrate to obtain sodium chloride. $\sqrt{1/2}$	(1 mark)
4	(a)	• Oxygen is used up. ¹ / ₂	
4.	(a)	oxygen is used up.	0.1
5.	(a)	• 2.8	(1 mark)
	(b)	$3V + Q_2 \longrightarrow V_3Q_2$	(1 mark
		OR	
		$3Mg + N_2 \longrightarrow Mg_3N_2$	
	(c)	T has a lower ionisation energy than M. $\sqrt{\frac{1}{2}}$	
		T has an extra energy level and hence electrons is less attracted by the po	ositive nuc (1 mark
6.	P_1V	$\perp = \frac{\mathbf{P}_2 \mathbf{V}_2}{\mathbf{T}_2} \sqrt{\frac{1}{2}}$	
0.			
	V2 =	$= \frac{P_1 V_1}{T_1} \times \frac{T_2}{P_2} = \frac{98,658.5 \times 150 \times 273}{293 \times 101,325} \sqrt{1}$	
	V,=	$= 0.136 \mathrm{dm^3} \sqrt{1/2}$	(2 mark
7.	(a)	$2Pb(NO_3)_2 \longrightarrow 2PbO + 4NO_2 + O_2$	(1 mark
		(s) (s) (g) (g)	

	(b)	Moles of brown gas (NO ₂) = $\frac{0.29}{24} = 0.012 \sqrt{\frac{1}{2}}$		
		Moles of lead (II) nitrate $=\frac{1}{2} \times \frac{0.29}{24} = 0.006 \sqrt{\frac{1}{2}}$	(2 marks)	
		Mass of lead (II) nitrate = $0.006 \times 331 \sqrt{\frac{1}{2}}$		
8.	(a)	= $1.9998 \text{ g} \sqrt{\frac{1}{2}}$ Strong acid ionises fully.	(1 mark)	
	(b)	A		
		Hel		
	CC			
	cn		(2 marks)	
9.	(a)	Time Hydrogen is expensive.	(2 marks)	
7.	(a)	Hydrogen is explosive.	(2 marks)	
10.	(a)	 Green colour of chlorine disappears. 		
		 Brown gas is produced or black solid is deposited. 	(1 mark)	
	(b)	$Cl_2 + I \longrightarrow 2 Cl^- + I$	(1 mark)	
		 (g) (aq) (aq) (s) Explanation: Iodine oxidation state changes from -1 to 0 hence oxidation 	on while chlorine	
		oxidation state changes from 0 to -1 hence reduction.	(1 mark)	
11.	(a)	Carbon (II) oxide is formed in the internal combustion engines when fue	arbon (II) oxide is formed in the internal combustion engines when fuel burns under limited	
		oxygen.	(1 mark)	
	(b)	Pollutant gas - Carbon (IV) oxide, Nitrogen (IV) oxide and Sulphur (IV)	V) oxide.	
12	(a)	 (Any two) Small piece of sodium metal (pea size) with alot of water. 	(2 marks)	
12.	(a)	 Perform the experiment wearing goggles. 	(1 mark)	
	(b)	Electrolysis.	(1 mark)	
	(c)	Manufacture of soap.	(1 mark)	
13.	Deliq	uescent substance absorbs water from the atmosphere to form a solution, w	vhile a fluorescent (2 marks)	
	subst	ance loses water of crystallisation to the atmosphere.	(2 marks)	
14.	P is it	n alkanol R - OH. The alkanol reacts with sodium metal to produce the col	ourless gas. (2 marks)	

15.	(a)	Ca (st) ₂ or Mg (st) ₂	(1 mark)				
		$\begin{array}{ccc} Ca^{2+} + CO_3^{2-} \longrightarrow CaCO_3 \\ (aq) & (aq) & (s) \end{array}$	(1 mark)				
		OR					
		$Mg^{2+} CO_3^2 \longrightarrow Mg CO_3$ (s)					
16.	By ad	lding Conc. H_2SO_4 as a catalyst.	(1 mark)				
17.	(a)	(i) Black solid is deposited.	(1 mark)				
		(ii) The indicator turns red.	(1 mark)				
	(b)	The experiment should be done in fume chamber or in open air.	(1 mark)				
18.	(a)	Cold $\frac{1}{2}$ and dilute sodium hydroxide. $\frac{1}{2}$	(1 mark)				
	(b)	 Used in sterilising of water. (1) Used as a bleaching agent. (1) 	(2 marks)				
19.	Plot A						
	Percentage of Nitrogen in $(NH_4)_2 SO_4$ = $\frac{21}{132} \times 100 = 21.2\%$						
	Amo	ant Nitrogen in 50 kg (NH ₄): SO ₄ = $\frac{21.2}{100} \times 50$					
		$= 10.6 \text{ kg}\sqrt{\frac{1}{2}}$					
	Plot B						
	Percentage of Nitrogen in urea = $\frac{28}{60} \times 100 = 46.7\%^{1/2}$						
		nount of Nitrogen in 30 kg = $\frac{46.7}{100}$ x 30					
		$= 14.01 \text{ kg}^{1/2}$	2				
	:. Plot B $\sqrt{\frac{1}{2}}$ is more enriched with nitrgen since if has higher amount of nitrogen than plot A $\sqrt{\frac{1}{2}}$. (3 marks)						
20.		Add water to dissolve the anti-acid powder.					
Aur 1.7 +	8		$\sqrt{\frac{1}{2}}$				

Add universal indicator and match the colour of solution with pH chart and read the value $\sqrt{\frac{1}{2}}$ (2 marks) •

21. (a) Sulphur or phosphorus.

- (1 mark)
- (b) Carbon atoms in graphite are arranged in layers of hexagons which are held by weak van der

waal forces. The layers slide over each other when some force is applied on them; hence suitable in making pencil leads. (3 marks)

22. (a) • Bromine
$$\sqrt{\frac{1}{2}}$$

- At room temperature (25°C), Bromine is liquid since its MP and bP is between -7 and 59.√¹/₂
 √1
- (b) Atomic mass of iodine is higher than that of chlorine. √1
 Van der waal's forces are stronger in iodine than chlorine hence iodine's bP is higher than that of chlorine. (3 marks)

Energy
$$C_{(s)} + 2 S_{(s)} (\frac{1}{2})$$

Reaction path (2 marks)

23.

26.

(b) Y and Z $\sqrt{1}$ They have the same number of protons (8) but different atomic masses. $\sqrt{1}$ (3 marks)

25. (a) When gases combine together at constant $\sqrt{1}$ temperature and pressure they do so in volumes which bear a simple ratio to each other, and to the volumes of the products if gaseous.

(b)
$$C_2H_x + 3O_2 \longrightarrow 2CO_2 + 2H_2O_{(g)}/_2$$

Vol. 10 : 30 20 20 $\sqrt{1/2}$
Mole ratio 1: 3 2 $2\sqrt{1/2}$
 $\therefore X = 4\sqrt{1/2}$ (3 marks)
(a) (i) Mass of oxygen = 10.400 - 10.352 = 0.048 g $\frac{1}{2}$

(ii) Mass of M powder =
$$10.352 - 10.24 = 0.118 \text{ g/s}$$

		Mole ratio M O $\frac{0.112}{56}$ $\frac{0.48}{16}$ 0.0020 0.0030 (1) Simplest ratio 2 3	
		Empirical formula $M_2O_3(1)$	(3 marks)
27.	(a)	Zinc blende or calamite $\sqrt{1}$	
	(b)	$ZnO + C \xrightarrow{\qquad} Zn + CO\sqrt{1}$ (s) (s) (g)	
	(c)	 Use of Zinc metal: dry cells; √½ galvanising iron sheet. √½ as electrodes. 	(3 marks)
28.	(a) (b)	• Single covalent bonding $\sqrt{\frac{1}{2}}$ • Dative (coordinate) bonding $\sqrt{\frac{1}{2}}$ 7 bonds x 2 = 14 electrons. $\sqrt{1}$	(2 marks)
29.	(a)	Mg metals have mobile delocalised electrons which carry the current $\sqrt{1}$	
	(b)	Molten magnesium chloride has Mg^{2+} and Cl^{-} ions which are free to move $\sqrt{1}$	(2 marks)
30.			
	Add	$\sqrt{1}$ aqeous actified Barium Nitrate	(2 modes)
	Form	nation of a white precipitate shows	(3 marks)
	Prese	ence of sulphate ions	
31.	Alka	line earth metals.	(1 mark)