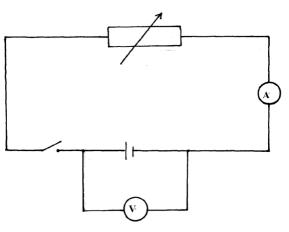
POST MOCK TERM 3 2019


Kenya Certificate of Secondary Education (KCSE)

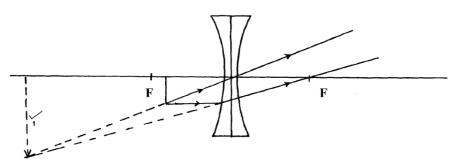
232/2 PHYSICS MARKING SCHEME PAPER 2

(SECTION A 25 Marks)

1. Light travels in a straight light $\sqrt{1}$ / Rectilinear propagation of light.

2.

- 3. When hammered the dipoles $\underline{Vibrate}/\sqrt{1}$ excited.
 - Then they align along the Earth's <u>Magnetic field $\sqrt{1}$ </u>
- 4. 1. Magnified
 - 2. Upright / erect any $2 \ge 1 = 2mks$
 - 3. Virtual
- 5. The gold leaf becomes more positive as a result of attraction of the negative charge towards the metal $cap\sqrt{2}$ (2mks tied)
- $6. \qquad \mathbf{V} = \mathbf{f}\,\boldsymbol{\lambda}\,\boldsymbol{\checkmark}\,\mathbf{1}$
 - V is constant $\checkmark 1$ λ_2 is $3\lambda_{1 \text{ OR}} \lambda_2 = 3\lambda_1 1 \checkmark 1$
- 7.


8.

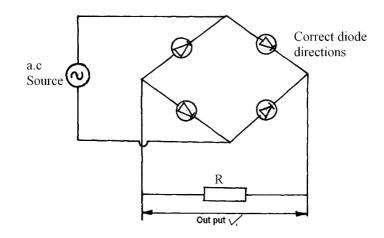
 $P = VI \checkmark 1$

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – Nairobi | Tel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

$$= 220 \times \frac{100}{240} \checkmark 1$$

= 91.67 W\sqcap 1

9.


10. X – rays : Produced when cathode rays / fast moving electrons are suddenly stopped in an x – ray tube.

Gamma rays: Produced when nucleons in on unstablenundidrearrange to form a stable nudide.

11. E. Energy =
$$\left(\frac{60 \times 36}{1000}\right) kwh \checkmark 1$$

 $= 2.160 \text{ kwh} \checkmark 1$

- 12. The spot moves up and down the screen. $\checkmark 1$
- 13. $f_0 = 4 \ge 10^{14} \text{ Hz} \checkmark 1 (3.5 4.5) \ge 10^{14} \text{ Hz}$
- 14.

SECTION B (55 MARKS)

- 15. a) i) Suspend the iron bar and the bar magnet separately using the string $\sqrt{1}$.
 - Displace Both slightly horizontall1.
 - Displace Both slightly horizontally.
 - ii) The bar magnet nettles pointing $\sqrt{1}$ in the North South direction.
 - The iron bar nettles pointing in any direction $\sqrt{1}$.
 - b) P requires less current $\sqrt{1}$ for all the dispoles $\sqrt{1}$ to be aligned in one direction/ to reach magnetic saturation while Q requires more current for all the dipoles to be aligned in one direction / to reach magnetic saturation.
 - P is soft magnetic material while Q is hard magnetic material $\sqrt{1}$
 - c) i) It turns anti clockwise $\checkmark 1$
 - ii) It turns clockwise√1

2.

- iii) 1) Attach a pointer with scale on the left side of the metre rule. $\checkmark 1$
 - Vary the current by adjusting $\sqrt{1}$ the rheostat.

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – Nairobi | Tel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

3. Calibrate or mark the scale for low and high current.
$$\checkmark 1$$

16.

- i) In transverse wave, the vibration of particles is perpendicular to the direction of travel of the wave but in longitudinal the vibration is parallel to the direction of the wave travel $\checkmark 1$
- ii) Sound wave requires medium for transgression but e.m waves does not require medium. $\sqrt{1}$

- Sound wave is longitudinal and e.m wave is transverse.
$$\checkmark 1$$

c)

i)

iii)

a)

$$V = \frac{2d}{c} \checkmark 1 = \frac{(2x400)m}{2.5s} \checkmark 1$$
$$= 320 / s \checkmark 1$$

ii)
$$320 = 2 \frac{2(x400)}{4.5} \checkmark 1$$
$$1280 = 2x - 800$$
$$2080 = 2x$$
$$1040 = x$$

$$\therefore x = 1040 \checkmark 1 \text{m}$$

- i) Produce coherent sources of light $\checkmark 1$
 - ii) Alternating <u>dark and bright</u> fringes $\sqrt{1}$ are observed on the screen on both sides of the <u>central brighter fringe $\sqrt{1}$ </u>
 - i) Dark and bright fringes get $closer \sqrt{1}$

ii) A full spectrum is observed
$$\checkmark 1$$

a) i) Dispersion of white light
$$\sqrt{1}$$

ii)
$$X - \text{Red}\sqrt{1}$$

- Y Violet√1
- iii) Red has the lowest frequency/ longest wavelength hence it is least deviated while violet has the highest frequency / shortest wavelength hence it is most deviated. $\checkmark 1$

iv) Acts as a point source of light
$$\sqrt{1}$$

b) i)
$$\arg = \frac{c}{v} \checkmark 1$$
$$= \frac{3.0 \times 10^8}{1.8 \times 10^8} \checkmark 1$$
$$= 1.6667 \checkmark 1$$
ii) c on the diagram \lambda 1
$$\eta = \frac{1}{\sin c} \therefore \sin c = \frac{1}{\eta} = \frac{1}{1.6667} = \checkmark 1$$
Sin c = 0.5999 \therefore C = 36.86⁰
iii)
$$\frac{\sin \theta}{\sin r} = a \eta g \checkmark 1$$
Sin $\theta = 1.6667 \times \sin 31.2 \checkmark 1$ Sin $\theta = 1.6667 \times \sin 31.2 \checkmark 1$
8. a) i) Hard x - rays \lambda 1
ii) Have high penetrating power \lambda 1
b) i) A = Cathod rays \lambda / fast moving electrons
B = Anode \lambda 1

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – Nairobi | Tel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

17.

- Change in heating current \checkmark 1 changes the number of electrons produced \checkmark 1 Kinetic energy \checkmark 1 of cathode rays is converted to heat \checkmark 1 energy. ii)
- iii)
- Has high density $\checkmark 1$ iv)

c)
$$eV = hf \checkmark 1$$

 $1.6x \ 10^{-19} x \ 12000 = 6.62 x \ 10^{-34} x \ f \checkmark 1$
 $f = \frac{1.6 x 10^{-19} x 12000}{6.62 \times 10^{-34}}$
 $f = 2.900 \ 10^{-18} \text{ Hz} \checkmark 1$