POST MOCK TERM 3 2019 Kenya Certificate of Secondary Education (KCSE)

233/2

CHEMISTRY Marking scheme

1. (a) halogens $\sqrt{1}$

(b) Electron arrangement $2.8.5 \sqrt{1}$

position: group V period $3\sqrt{1}$

(c) The atom of R is larger $\sqrt{\frac{1}{2}}$ // has a larger atomic radius than the ion $\sqrt{\frac{1}{2}}$ This is because the ion of R is formed when the atom loses the electrons in the outermost energy level $\sqrt{\frac{1}{2}}$ therefore, the ion has one less energy level than the atom. $\sqrt{\frac{1}{2}}$

(d) (i) $P_2W//WP_2 \sqrt{\frac{1}{2}}$

(ii) TY₄//Y₄T $\sqrt{\frac{1}{2}}$

(e) S has a higher $\sqrt{\frac{1}{2}}$ melting point than Q $\sqrt{\frac{1}{2}}$

This is because e S has more valence electrons in its metallic structure hence a stronger metallic bond $\sqrt{\frac{1}{2}}$ than $Q \sqrt{\frac{1}{2}}$ (f) M $\sqrt{1}$

It has a completely filled outermost energy level $\sqrt{\frac{1}{2}}$ and therefore, does not need to react with other elements to gain stability $\sqrt{\frac{1}{2}}$

(g) S has a higher electrical conductivity than Q.

S does not corrode easily like Q.

(h)

2. (a) (i) I

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – Nairobi | Tel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

 $63.5g \longrightarrow 193000c$ 48,250c48,250c $\frac{48250}{193000} \sqrt{1 \times 63.5} = 15.875 \sqrt{1}$

4. (a) (i) Fractional distillation of liquefied air √1 (reject from air)
(ii) Electrolysis of water//dilute sodium chloride//any dilute √1(reject from water etc) Accept cracking of long chain alkane

(b)(i) Platinum-rhodium//platinum $\sqrt{1}$

- (ii) $4NH_{3(g)}+5O_{2(g} \rightarrow 4NO_{(g)} + 6H_2 O_{(g)}\sqrt{1}$
- (c) (i) $NH_{3(g)} + HNO_3(g) \longrightarrow NH_4NO_{3 (aq)}$
- (ii) As a fertilizer
- (d) The haber process

(e) (i) it lowers the yield. This is because lowering pressure favours the backward reaction // equilibrium shift to the left $\sqrt{1}$ and therefore lowering the ammonia yield $\sqrt{\frac{1}{2}}$

- (ii) manufacture of explosives
 - Manufacture of dyes and drugs
 - Purifications of metals
 - Etching designs on some metals $\sqrt{any1}$

(f) $4NO_{2(g)} + 2H_2 O_{(l)} + O_{2(g)} \rightarrow 4HNO_{3(aq)} \sqrt{1}$ accept $2NO_{2(g)} + H2O \rightarrow HNO_{3(aq)} + HNO_{2(aq)}$ $2HNO_{2(aq)} + O_{2(g)} \rightarrow 2HNO_{3(aq)}$

5. (a)

Workalsility VI

(b) (i) I $\Delta T = 46.5 - 25 = 21.5 \text{ K} \sqrt{\frac{1}{2}}$ $\Delta H = MC\Delta T$ $= 0.45 \times 4.2 \times 21.5 \sqrt{\frac{1}{2}}$

=
$$40.635KJ\sqrt{1}$$

II mass of ethanol used=125.5-124.0=1.5 Kg
C₂H₅OH = 24+5+16+1=46 $\sqrt{\frac{1}{2}}$
1.5g \rightarrow 40.635KJ
46 \rightarrow ?
47 \rightarrow ?
46 \rightarrow ?
46 \rightarrow ?
47 \rightarrow ?
46 \rightarrow ?
46 \rightarrow ?
47 \rightarrow ?
46 \rightarrow ?
47 \rightarrow ?
46 \rightarrow ?
46 \rightarrow ?
47 \rightarrow ?
46 \rightarrow ?
46 \rightarrow ?
46 \rightarrow ?
46 \rightarrow ?
47 \rightarrow ?
46 \rightarrow ?
47 \rightarrow ?
47

(d)(i) A fuel is a substance that produces useful energy when it undergoes a chemical or nuclear reaction $\sqrt{1}$ (ii) causing global warming//green house effect $\sqrt{\frac{1}{2}}$

- (ii) causing global warming//green nouse cheer
- 6. (a) (i)N: lead (II) carbonate $/\,/PbCO_3$
 - P: zinc sulphate/ZnSO₄
 - (ii) BaSO₄ (iii)

Test	Observation
1. To a sample of solid N in a test	Effervescence occurs $\sqrt{\frac{1}{2}}$ //bubbles
tube add dilute nitric acid. $\sqrt{1/2}$	produced
filter the mixture and retain the	A colourless solution is formed $\sqrt{1/2}$

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – Nairobi | Tel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

filtrate for test 2 below $\sqrt{\frac{1}{2}}$	
2. To a little of the filtrate in a test	A white precipitate is formed $\sqrt{\frac{1}{2}}$
tube add 2-3 drops of sodium	Which dissolves on warming $\sqrt{1/2}$
chloride solution //HCL $\sqrt{\frac{1}{2}}$	
warm the mixture $\sqrt{1/2}$	

(b)- To about 50cm³ of 2M sulphiric (VI) acid add copper (II) oxide a little at a time stirring until there is no further change. $\sqrt{1/2}$

- Put the filtrate in an evaporating dish and heat it over a water bath until it is ready to crystalize $\sqrt{1/2}$

- Stop heating the filtrate and let it cool slowly $\sqrt{\frac{1}{2}}$

- After crystals have formed filter the mixture and retain the residue $\sqrt{\frac{1}{2}}$ -Dry the crystals between filter papers $\sqrt{\frac{1}{2}}$ to obtain dry crystals of copper (II) sulphate

7. (a) Carbon (IV) oxide $\sqrt{1 + Carbon}$ (II) oxide $\sqrt{1//CO_2,CO}$

(b) (i) when heated it produces carbon (iv) oxide which is necessary in the

process√ 1

(ii) Reduces carbon (IV) oxide to Carbon (II) oxide $\sqrt{\frac{1}{2}}$ which in turn reduces iron

one to iron

(c) Slag $\sqrt{1}$

CaO (s) + SiO (s) \longrightarrow CaSiO₃ (l) $\sqrt{1}$ CaO(s) + Al₂O₃(s) \longrightarrow CaAL2O4 $\sqrt{1}$

(d) $2Fe2O_3(s) + 3C(s)$ Heat $4Fe(l) + 3CO_2(g) / /$

 $\sqrt{1}$ any one (1)

 $Fe2CO_3(s) + 3CO(g) \longrightarrow 2Fe(l) + 3CO_2(g)$

(e) –Construction of buildings

-Making of vehicle parts and other machines

-Making of stainless steel

-Making of iron sheets $\sqrt{1}$ any