POST MOCK TERM 32019 Kenya Certificate of Secondary Education (KCSE) 233/1 CHEMISTRY (THEORY) PAPER 1 MARKING SCHEME

1) A thistle funnel does not have a tap while a dropping funnel has $\sqrt{1//}$ A dropping funnel delivers controlled amounts of liquid substances while a thistle funnel does not.

2) a) A substance that dissociates in water to give hydrogen ions as the only positively charged ions.. $\sqrt{1}$ b) Sodium hydroxide solution causes a greater deflection on the ammeter than ammonia solution. . $\sqrt{1}$ Sodium hydroxide completely ionizes. $\sqrt{\frac{1}{2}}$ to form sodium and hydroxide ions while ammonia solution partially ionizes. $\sqrt{\frac{1}{2}}$ to form ammonium and hydroxide ions.

3)a) fermentation. $\sqrt{1}$

b)Ethanol forms hydrogen bonds $.\sqrt{\frac{1}{2}}$ with water while ethane does not//. $\sqrt{\frac{1}{2}}$ remains molecular/has only weak vanderwaals forces(intermolecular force)//.Ethane is non polar while ethanol is polar.

4) a) $^{234}U \rightarrow ^{230}Th + {}^{4}He.\sqrt{1}$

(b) Gamma rays will penetrate through the walls of the container and cause damage.

5)a) I.. $\sqrt{1}$ II More Oxygen is used to form CO₂. $\sqrt{1}$ b) (i) CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O IV 2V 1V 2V. $\sqrt{\frac{1}{2}}$ 80 cm³ 150 cm³ 75 cm³ 150 cm³ Volume of carbon (IV) oxide = 75 x 1 = 75 cm³ . $\sqrt{\frac{1}{2}}$ (ii) Volume of water = 2 x 75 = 150 cm³ Residual air = 5 cm³ + 75 cm³ + 150 cm³ . $\sqrt{\frac{1}{2}}$ = 230 cm³ . $\sqrt{\frac{1}{2}}$

6)a) X. $\sqrt{\frac{1}{2}}$ It is stable; it neither loses nor gains electrons. $\sqrt{\frac{1}{2}}$

b) W and Y. $\sqrt{1}$

c) YW. $\sqrt{\frac{1}{21}}$

7). a) Thermometer should not be dipped in the mixture, $\sqrt{1}$ it should be at the outlet point to the condenser.

The direction of water flow is wrong/ condenser wrongly fixed. $\sqrt{any 1}$

No water bath is used (b)Boiling point/ Freezing point/Density / refractive index

8).a) $2Pb(NO_3)_{2(s)} \rightarrow 2PbO+4NO_2(g) + O_{2(g)} \cdot \sqrt{1}$

b) Moles of NO₂ gas= $\frac{0.29}{24} = 0.01208 .\sqrt{\frac{1}{2}}$

moles of Pb(NO₃)₂₌ $\frac{1}{2}$ x0.01208 = 0.006 . $\sqrt{\frac{1}{2}}$

mass of Pb(NO₃)₂=0.006x331. $\sqrt{\frac{1}{2}}$ =1.986g. $\sqrt{\frac{1}{2}}$

9) a) Neutralization.√1
b) (i)Calcium hydrogen carbonate.√1
(ii) Drying agent. .√1 Extraction of sodium from Downs's process..√½
10.Kerosene floats on water therefore it continues to burn carbon (iv) oxide blanket covers the flame.√1// cuts off the supply of oxygen therefore burning stops .√

11) a) ΔH₁ – Bond breaking.√ ½ / activation Energy Δ H₃ – Energy evolved during reaction
(b) ΔH₃ = ΔH₁ + Δ H₂.√ 1

12.Add excess zinc oxide. $\sqrt{\frac{1}{2}}$ to dilute HCl(aq). $\sqrt{\frac{1}{2}}$ / HNO₃(aq) / H₂SO₄(aq).Filter. $\sqrt{\frac{1}{2}}$ To the filtrate add aqueous K₂CO₃(aq) / Na₂CO₃(aq) / (NH₄)₂ CO₃(aq) to precipitate ZnCO₃(S). $\sqrt{\frac{1}{2}}$ Filter. $\sqrt{\frac{1}{2}}$ to obtain ZnCO₃(S) as the residue. $\sqrt{\frac{1}{2}}$

```
Q13. i) T = (32 \times 60) + 10 = 1930 \text{ s} \cdot \sqrt{\frac{1}{2}}

I = 0.5

Q = It = 0.5 x 1930 = 765 C \cdot \sqrt{\frac{1}{2}}

0.44g deposited by 765C

88g ?

\frac{88}{0.44} x765 = 153000 \cdot \sqrt{\frac{1}{2}}

\frac{153000}{96500} = 1.586 \cong 2 \cdot \sqrt{\frac{1}{2}}

Charge of X = 2

ii) X(OH)<sub>2</sub>. \sqrt{1}
```

Q14. Butane. $\sqrt{1}$

	Н	Н	Н	Н	
	Ι	Ι	Ι	Ι	
Н-	С	- C	- C -	С	- H
	Ι	Ι	Ι	Ι	
	Н	Η	Н	Н	

O15(a)Barium Sulphate (BaSO₃). $\sqrt{1}$

(b)BaSO_{3(s)} + 2HCI (aq) →BaCI_{2(aq)} + SO_{2(aq)}. $\sqrt{1}$ (c)Changes from orange to green. $\sqrt{1}$

Q16			
Element	C	Н	0
% Composition	57.15	4.76	38.09 √1
R.A.M	12	1	16
% R.A.M	4.7625	4.76	2.380625√1
Moles ratio	$\frac{4.7625}{2.380625} = 2.004 = 2$	$\frac{4.76}{2.380625}$ =2.00	$\frac{2.380625}{2.380625} = 1$ $\sqrt{\frac{1}{2}}$

Empirical formula= $C_2H_2O\sqrt{\frac{1}{2}}$

$$n = \frac{126}{42} = 3 \sqrt{\frac{1}{2}}$$

010

Molecular formula = $(C_2H_2O)_3 = C_6H_6O_3\sqrt{\frac{1}{2}}$

Q17 a) Ammonia gas $\sqrt{1}$ b) Filtration/precipitation/Crystallization $\sqrt{1}$ c) 2NaHCO₃ (s) \rightarrow Na₂CO_{3(s)} + CO_{2 (g)} + H₂O (g) $\sqrt{1}$

Q18. -Iron wool turns or rusts $\sqrt{\frac{1}{2}}$ due to formation of hydrated iron (III) oxide $\sqrt{\frac{1}{2}}$ -Level of water inside the tube rises $\sqrt{\frac{1}{2}}$ to occupy the space left by oxygen $\sqrt{\frac{1}{2}}$ // Level of water in the beaker will fall

Q19.a) The water contained impurities √1 (1mk) //presence of impurities elevate the Boiling point. // water contained dissolved ions//Hard.
b) (i) Copper(II) sulphate;√1 at 40°C ONLY 28gm is soluble leaving the rest undissolved. √1 At 40°C, all lead nitrate dissolves.
(ii) 35-28=7g√ ¹/₂

Q20. Equilibrium shift to the right (1mark)

- Shift to the right $\sqrt{\frac{1}{2}}$

- Shifts to the left (equivalent to increase in pressure) (1mark)

Q21.a)

b)
$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)\sqrt{1}$$

Q22. a) $1000 \text{ cm}^3 = 0.1 \text{ mol}$ 25 cm³ $\frac{25}{1000} x 0.1 = 0.0025 \text{ mol} \sqrt{1}$ b) H₂X (aq) + 2 NaOH (aq) \rightarrow Na₂X(aq) + H₂ O(1) Mole ratio 1 : $2\sqrt{1}$ Moles of acid = $0.0025x2 = 0.00125 \text{ mol} \sqrt{\frac{1}{2}}$ Molarity = $\frac{1000}{18.7} x 0..00125 = 0.0668 \text{M} \sqrt{\frac{1}{2}}$

√Q23. NH₄NO₃(s) →N₂O(g) + 2H₂O(g) b) Over warm water.√½ Downward displacement of warm water because it is fairly soluble in cold water.√½ c) Both red and blue litmus will not change colour√1

Q24. a)At room temperature $\sqrt{1}$ cold and dilute sodium hydroxide b)Used in sterilizing of water / treatment of water / killing germs Used as a bleaching agent $\sqrt{1}$ any Antiseptic for mouth wash Fungicide

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – Nairobi | Tel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u> Q25. Q22. a) $2cr + -2 \ge 7 = -2 \sqrt{\frac{1}{2}}$ 2cr - 14 = -2 2cr = +12 $Cr = +6\sqrt{\frac{1}{2}}$ (b) Oxidation - Fe²⁺ $\sqrt{1}$ (Iron (II) ions) to Fe³⁺(increase of oxidation number/ loss of electron) Reduction - Chlorine to Cl⁻¹(decrease in oxidation number/ gain of electron) $\sqrt{1}$

Q26. a)Bromine

At room temp (25°c) Bromine is liquid since its M.P is -7°c and B.P 59°c/58.8°c.Room temp is between its M.P and B.P $\sqrt{1}$ b) Atomic mass / molecular mass / molecule of iodine is higher than that of Cl₂. Van der waals forces are stronger in I₂ than Cl₂ hence iodinesb.p is highest than that of Cl₂

Q27. a) N $\sqrt{1}$ b) Eø =0.80 +0.76 $\sqrt{\frac{1}{2}}$ = 1.56 volts $\sqrt{\frac{1}{2}}$

Q28. a) Polystyrene or polyphenylethene $\sqrt{\frac{1}{2}}$

b) $\sqrt{1}$ c) non biodegradable $\sqrt{1}$

Q29. P₁+ P₂ Volume is constant

$$\frac{760}{273} = \frac{P_2}{373} \qquad P_2 = \frac{760 \text{ x } 373}{273} \sqrt{1} = 1038 \text{ mmHg} \sqrt{1}$$