MARKING SCHEME

232/3

PHYSICS PAPER 3

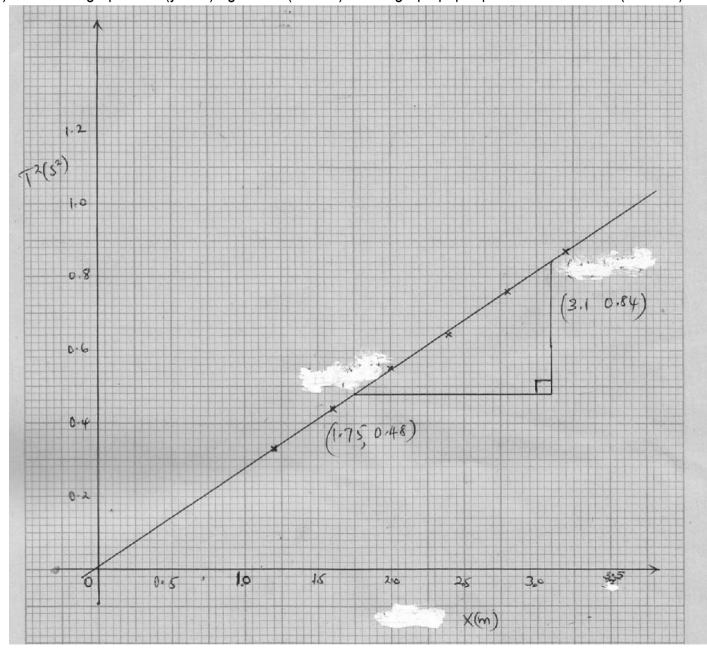

(a)

Table 1

Length X cm	32	28	24	20	16	12	
Time t for 10 oscillations (s)	9.32	8.72	8.00	7.40	6.62	5.75	√√2
Period $T = \frac{t}{10}$ (s)	0.932	0.872	0.8	0.74	0.662	0.575	√√2
T ² (S ²)	0.87	0.76	0.64	0.55	0.44	0.33	√ 1

(any 4 to 6 correct values, 2 marks, 2 to 4 values, 1 mark, less than 2 values, no mark)

(b) Plot a graph of T² (y-axis) against X (metres) on the graph paper provided. (5 marks)

Scale = 1 mark

Axes with units=1 mark

Plots = 2 marks

Line = 1 mark

(c) i)

slope=
$$\frac{0.84-0.48(S^2)}{3.1-1.75(m)}$$

slope =
$$\frac{0.36}{1.35}$$

slope = 2.67s²/m \checkmark

(3 marks)

ii) Obtain the value of K in the equation $S = \frac{8\pi}{3k}$

(2marks)

2.67s²/m=
$$\frac{8\times3.142}{3k}$$

$$3k = \frac{8 \times 3.142}{2.67}$$

$$k = \frac{8 \times 3.142}{3 \times 2.67}$$

$$k = 3.1381 \, m/s^2 \, \checkmark$$

PART E

(d)

(3 marks)

Table 2

t ₁ ((s)	t ₂ (s)	t ₃ (s)	Average t(s) $t = \left(\frac{t_1 + t_2 + t_3}{3}\right)$	$T = \frac{t}{5}(s)$
3.68 √ ½	3.75 √ ½	3.81 🗸 ½	$\frac{3.68 + 3.75 + 3.81}{3}$ $\checkmark \frac{1}{2}$	$T = \frac{3.747}{3} < 1$ = 0.7494

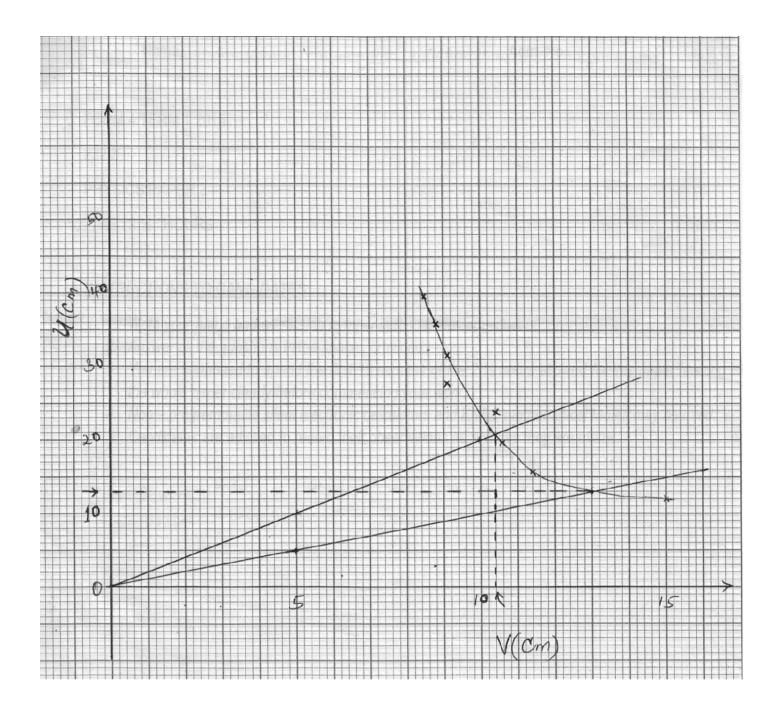
(e) (2 marks)

$$P = \frac{40 \times 0.12(m)}{0.7494^2} \checkmark$$

QUESTION TWO

$$R = \sqrt{\frac{100}{h}}$$

$$R = \sqrt{\frac{100}{6.3}} = 3.98 \text{ cm}$$
 (1 Marks)


(i) (8 marks)

	10R	9R	8R	7R	6R	5R	4R	3R
U (cm)	39.8	35.9	31.9	27.9	23.9	19.9	15.9	12.0
V (cm)	8.5	8.8	9.1	9.1	10.4	10.6	11.4	15.0

NB: Any other appropriate value of u and v depending on the value of R obtained can be awarded.

-each correct value = $\frac{1}{2}$ mark

(5 marks)

Scale =1 mark

Axes with units=1 mark

Plots = 2 marks

Smooth Curve = 1 mark

i) From the graph determine

'V' the value of V for which v=u

(1 Mark)

'V'=13cm√

a) 'U' the value of U for which u=2v

(1 Mark)

ii) **Determine** the effective focal length of the 'lens' from the formulae $f = \frac{\dot{u} + \dot{v}}{5}$ (2 Marks)

(1 Mark)

$$f = \frac{10.4 + 13.0}{5} \checkmark$$

$$= \frac{23.4}{5}$$

$$f = 4.68cm \checkmark$$

iii) Hence determine the value of $\frac{R}{f}$

$$\frac{R}{f} = \frac{3.98cm}{4.68cm} = 0.85$$
 \checkmark