FORM 3 CHEMISTRY PAPER 2 MARKING SCHEME TERM 2 2019

1	 a) i) C gains electrons to √½ form ions, innermost electrons √½ repels incoming electrons hence larger ionic radius. ii) It has giant atomic √½ structures revealed by strong covalent √½ bonds hence require higher √ energy to melt. iii) BCl₂ √1 b) U - 2,6√1 v - 2,8,3 √1 c) i) Heating of cotton √½ wool and magnesium √½ ii) Wet cotton produced √½ steam when heated √½ Steam reacted with hot √½ magnesium forming gas C√½ 					
2.		 a) i) A mixture of brine // conc NaCl and ammonia gas√1 ii) NaCl_(aq) + NH_{3 (aq)} + CO_{2 (g)} + H₂O_(l) → NaHCO_{3 (s)} + NH₄Cl_(aq) ✓1 iii) Filtration ✓1 Fractional crystallization ✓1 b) Manufacture of glass√1 				
		Cattle licks \checkmark 1(Any two @ 1mkTotalSoftening of water \checkmark 1(Any two @ 1mkTotal				
		= 2mks)				
		c) i) CaO / Calcium oxide $\sqrt{1}$				
		ii) Heating of calcium carbonate to produce $CO_{2(g)} \checkmark 1$				
		Heating of carbon to $CO_{2(g)}$ (Any one)				
		d) $2NaHCO_{3(s)} \longrightarrow Na_2CO_{3(s)} + CO_{2(g)} + H_2O_{(l)} \checkmark 1$				
		e) Ammonia $\sqrt{1/2}$ and carbon (IV) oxide $\sqrt{1/2}$				
	f) Allows slow movement of ammonical brine $\sqrt{1}$ inorder for the reaction to oc					
		effectively//				
		increase surface area for reaction $\sqrt{1}$				
		g) $\operatorname{NaCl}_{(aq)}$ + $\operatorname{NH}_{3(g)}$ + $\operatorname{CO}_{2(g)}$ + $\operatorname{H}_{2}\operatorname{O}_{(l)}$ \longrightarrow $\operatorname{NaHCO}_{3(s)}$ + $\operatorname{NH}_{4}\operatorname{Cl}_{(aq)}$				
		$2\text{NaHCO}_{3 (s)} \longrightarrow \text{Na}_2\text{CO}_{3 (s)} + \text{CO}_{2 (g)} + \text{H}_2\text{O}_{(l)} \checkmark 1$				
		63.6 tonnes.				
		Mass of $Na_2CO_3 = 106g$				
		Moles of Na ₂ CO ₃ = $\frac{63.6 \times 1000 \times 1000}{106} \sqrt{\frac{1}{2}}$				
		$= 600000 \text{ moles} \sqrt{\frac{1}{2}}$				
		$= 600000 \text{ moles} \sqrt{22}$ Moles of NaHCO ₃ = 600000 x 2				
		$= 1200000 \text{ moles} \sqrt{\frac{1}{2}}$				
		1 mol of NaCl produces 1 mol of NaHCO ₃				
		Mass of NaCl = $58.5g\sqrt{\frac{1}{2}}$				
		$58.5g = 1 \text{ mol of NaHCO}_3$				
		$1200000 \text{ mol } \sqrt{\frac{1}{2}}$				
-	.1					

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – NairobTel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

$$= \frac{58.5 \ x \ 1200000}{1}$$

$$= \frac{70200000}{1000 \ x \ 1000} g$$

$$= 70.2 \ tonnes$$

$$= 70.2 \ tonnes \ \sqrt{1/2}$$
or
Mass of NaHCO₃ = 23 + 1 + 12 + 48
$$= 84g \sqrt{1/2}$$
2 x 84g NaHCO₃ = 106g Na₂CO₃
63.6 tonnes \(\sqrt{1/2})
$$\frac{2 \ x \ 84 \ x \ 63.6}{106}$$
100.8 tonnes \(\sqrt{1/2})
Mass of NaCl = 58.5 \(\sqrt{1/2})
Mass of NaCl = 58.5 \(\sqrt{1/2})
Mass of NaCl = 84g \ NaHCO₃
100.8 tonnes
$$\frac{58.5 \ x \ 100.8}{84}$$

$$= 70.2 \sqrt{1/2}$$

3. a) I: The outlet delivery tube should not dip into the Zinc/dilute Sulphuric acid mixture in the round

buttoned flask. ✓ 1mk

II: The use of heat is not required \checkmark 1mk

b)

c) i) It does not react with conc. $H_2SO_4 \checkmark 1 \text{ mk}$

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – NairobTel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u>

5(a) Allotropy is the existence of an element in more than one form without a change of state (

(b) (i) D – Graphite (1)

(ii) E _ Diamond (1)

(ii) In electrolysis as an electrode or used as a lubricant Lead pencils or Atomic piles (any one) (1)

(iii) E or Diamond (1); all its 4 outermost electrons are involved in bonding ($\frac{1}{2}$) Thus it has no free/mobile electron to conduct electricity. ($\frac{1}{2}$)

(c) (i) $CO_{2(g)}$ is denser than air (1)

 $CO_{2(g)}$ does not support combustion (1)

 $CO_{2(g)}$ does not burn (1) (any two)

(d) (i) $CO_{2(g)} + C_{(s)} \longrightarrow 2CO_{(g)}(1)$

(ii) Sodium hydroxide (1)

(iii) pass a sample of each gas $(CO_{2(g)} \text{ and } CO_{(g)})$ in a boiling tube containing $Ca(OH)_{2(aq)}$. Carbon(IV) Oxide (1) forms a white precipitate with Calcium Hydroxide (lime water. Carbon(II) Oxide has no reaction with Calcium Hydroxide solution (1) (2mks)

OR

Carbon(IV) Oxide turns litmus paper pale red while Carbon(II) Oxide has no effect on litmus paper (any other correct description)

(iv) Reduction of metal oxides

6. a) I isolation of nitrogen from air

ii) concentrated sodium hydroxide or KOH(aq)

iii)Burns to produce white residue or solid

iv)to remove the water vapour or to dry the gas

v)rare gases - neon and argon

b)it is hygroscopic and absorbs water from air, the water reacts explosively with concentrated sulphuric acid

ii)Nitric(vi) acid decomposes to form NO_2 and O_2 on heating the NO_2 is the brown gas. c) % of acid can be increased through fractional distillation.

7a) $2NaNO_3(s)$ heat $NaNO_2(s) + O_2(g)$

b) Slightly soluble in water

c) No effect on the litmus paper because the gas produced is neutral.

7B)when the circuit is completed the bulb lights(1/2) brown substance(1/2)formed grey(1/2)substance formed on cathode:because $pbBr_2$ acts as an electrolyte(1/2):lead ions gain electrons to form pb(1/2) and loses electrons to form (Br) $\frac{1}{2}mk$

Compiled & distributed by Schools Net Kenya, P.O. Box 15509-00503, Mbagathi – NairobTel:+254202319748 E-mail: infosnkenya@gmail.com | ORDER ANSWERS ONLINE at <u>www.schoolsnetkenya.com</u> A-- cathode B—anode

- 8. i) $2NaHCO_3$ (s) $Na2CO_3 + CO_2 + H2O_3$ (s) (g) (g) (2mks)
- ii)168 g of NaHCO₃ yield 106g of Na₂CO₃ 8.4g.....<u>106x8.4</u> 168 =5.3g of Na₂CO_{3(2mks)}

iii)22.4 liters at s.t.p 168 g of NaHCO3 evolve 22.4 liters at s.t.p 8.4g of NaHCO3 evolve 22.4 x8.4 168

=1.12 litres(2mks)

b)		
Element	Cu	0
Composition	3.2	0.8
Reacting moles	3.2/64=0.05	0.8/16=0.05
Mole ratio	0.05/0.05=1	0.05/0.05=1
	$C \cap 1 $	

Emphirical formula CuO 1:1 (4mks)

c)boyles law	$20x375 = 15xv_2$	
$p_1v_1 = p_2v_2$	v2 = 20*375	
$\begin{array}{c} p_{1=20} & \operatorname{atm}_{3} \\ v_{1=375 \mathrm{cm}} \end{array}$	15	
	3	(3mks)
$p_2 = 15 \text{ atm}$ $v_2 = ?$	$V_{2=500cm}$	
[*] ₂ =?		