CHEMISTRY PAPER 3 TERM 1 MARKING SCHEME FOR FORM 4

TABLE 1

1. Initial temperature $-\frac{1}{2}$ mk.

Final temperature $-\frac{1}{2}$ mk.

Change in temperature -2° C. (1 mk)

(a) Enthalpy change = -50 x 4.2 x 2J. (1 mk)
= -420J (1 mk)
(
$$^{1}/_{2}$$
 mk penalty for missing negative sign)

(b) Average volume of solution A.

$$\frac{22.9 + 23.0 + 23.1}{3} = 23.0 cm^3 \text{ (1 mk)}$$

(c) No of moles of solution A used.

$$\frac{0.2 \times 23}{1000} = 0.0046 \ moles \ (1 \ mk)$$

(d)
$$Na_2 Co_{(aq)}^3 + 2Hcl_{(aq)}$$
 \longrightarrow $2Nacl_{(aq)} + Co_{2(g)} + H_2O_{(l)}$ $1:2 \binom{1}{2} mk$

No of moles of solution X that reacted in (c) above.

$$\frac{1}{2}$$
 X 0.0046 moles = 0.0023 moles. ($\frac{1}{2}$ mk)

(e) Moles of solid X used in procedure I

0.0023 moles
$$\xrightarrow{}$$
 25cm³ $\xrightarrow{}$ 250 cm³ $=$ 0.0023 ×250 = 0.023 moles (½ mk)

(f) molar heat of solution of Na2Co3

0.023 moles
$$-420J$$
 ($^{1}/_{2}$ mk)
1 mole $\frac{-420J}{0.023}J$ ($1/2$ mk)
= -18 260.86 J
= 18.2608 KJmol⁻¹ (1 mk)

Qn 2

Time in minutes	0	1/2	1	1 1/2	2	2 ½	3	3 ½
Temperature in ⁰ C	27.0	27.0	27.0	27.0	27.0	X	32.0	32.0

Time in minutes	4	4 ½	5	5 ½	6	6 ½	7
Temperature in ⁰ C	32.0	32.0	32.0	32.0	32.0	32.0	32.0

CT = 1mk $Trend = \frac{1}{2}mk$ Use of decimals = 1 mk 1^{st} reading = $I 2^{0}C S.V \frac{1}{2}mk$

(a) Graph
Labeled Axis
$$-(^1/_2 \text{ mk for each})$$

Plotting -1 mk
Shape -1 mk

(b)
$$DT = 5^{0}C$$
. (1 mk)

(d) Heat of neutralization – 56KJ/mole. 1 mole produces 56 KJ

? 2.1 KJ
$$\frac{1\times 2.1}{56} = 0.0375 \text{ moles}$$
 (1 mk) (1 mk)

V - 40cm3
Moles - 0.0375
No of moles =
$$\frac{m \times v}{1000}$$

 $0.0375 = \frac{m \times 40}{1000}$
M = $\frac{0.0375 \times 1000}{40}$ (1 mk)
= 0.9375M. (1 mk)

Qn 3

TEST	OBSERVATIONS	INFERENCE
(a) Heating solid k.	A colourless gas that turns moist red	NH4 ⁺ present (1 mk)
	litmus paper to blue is produced. (1 mk)	
(b) (i) Addition of NaOH	A white ppt $(^{1}/_{2}$ mk) which dissolves in	Al ³⁺ , Zn ²⁺ or Pb ²⁺ present
	excess. (½)	All 3 – 1mk
		$2 \text{ only } - \frac{1}{2} \text{ mk}$
		½ mk penalty for a wrong
		ion

(ii) Addition of Ammonia	A white ppt ½ mk which dissolves in	Al^{3+} , Zn^{2+} or Pb^{2+} present.
, ,	excess ½ mk	_ ·
solution	excess 72 mk	All 3 – 1mk
		$2 \text{ only} - \frac{1}{2} \text{ mk}$
		½ mk penalty for a wrong
		ion
(iii) Addition of Ba(No ₃) ₂	A white ppt ½ mk which dissolves in	Zn2+ present (1 mk)
then HNO ₃	excess ½ mk	
(c) (i) Burning of solid P	Solid P burns with a sooty flame (1 mk)	
		C = c or
		-C≡ c – present
		½ mk for one
(ii) (a) Addition of	PH of 4 (1 mk)	Solution is weakly acidic (1
universal indicator	·	mk)
(b) Addition of NaHCo ₃	Effervescence present	H ⁺ present

