TERM III CHEMISTRY PAPER 3 (PRACTICAL) FORM THREE MARKING SCHEME

1. CT – 1mk D.P – 1 mk Accuracy (1 mk)

(a) Average volume of solution X = 25.0cm³ (1 mk) (b) Moles of solution X required NaOH(aq) + HCl(aq) \longrightarrow NaCl(aq) + H2O(1) 1:1 (1/2 mk) Moles of NaOH = $\frac{0.2 \times 25}{1000}$ = 0.005 moles (1/2 mk) Moles of solution X = $\frac{0.005 \times 1}{1}$ = 0.005 moles (1 mk) (c) Molarity of solution X No. of moles = 0.005 moles 0.005 moles 25cm³ ? 1000 cm³ = $\frac{0.005 \times 1000}{25}$ (1 mk) = 0.2m (1 mk)

Procedure II

CT - 1 mkD.P - 1 mkAccuracy -1 mk(d) Average volume of solution X $=25.0 \text{ cm}^3 (1 \text{ mk})$ (e) Number of moles of Na_2CO_3 in $25cm^3$ \rightarrow 2NaCl_(aq) + CO_{2(g)} + H₂O_(l) $Na2CO_{3(aq)} + 2HCl_{(aq)}$ 1:2 Moles of HCl reacting = $\frac{0.2 \times 25}{1000}$ = 0.005 moles (1/2 mk)Mole ratio - Na₂CO₃:HCl 1:2(1/2 mk)Moles of Na₂CO₃ = $\frac{1}{2}$ x 0.005(1/2 mk) = 0.0025 moles (1/2 mk) (f) Concentration of sodium carbonate in moles per litre. $0.0025 \text{ moles} \longrightarrow 25 \text{cm}^3$ $\longrightarrow 1000 \text{cm}^3$? $\frac{0.0025 \times 1000}{27} (1 mk) = 0.1 M (1 mk)$

2. (a)

Observations	Inferences
- Solid turns to yellow and then to white on	Zn^{2+} present (1 mk)
cooling. (1 mk)	The gas is acidic
- A gas that turns moist blue litmus paper to red.	

(b) (i)	
Observations	Inferences
A white precipitate soluble in excess. (1 mk)	Zn^{2+} present (1 mk)

Compiled and supplied by Schools Net Kenya P.O.Box 15509-00503, Nairobi-Tel:+254202319748 | E-Mail: infosnkenya@gmail.com | Order answers online at www.schoolsnetkenya.com (ii)

(11)	
Observations	Inferences
A white ppt present (1 mk)	$SO_4^{2^-}$, Cl ⁻ , $CO_3^{2^-}$ present (1 mk for any two)

(c)

Observations	Inferences
Effervescence present (1 mk)	CO_3^{2-} present (1 mk)

(i)

Observations	Inferences
A white ppt which dissolves in excess (1 mk)	Zn^{2+} present (1 mk)

(ii)

Observations	Inferences
No white ppt (1 mk)	$SO_4^{2^-}$, CL ⁻ , $SO_3^{2^-}$ absent (1 mk for any two)

3. (a) (i)

Observations	Inferences
Solid burns with a sooty flame (1 mk)	c = c = c = c = c = c = c = c = c = c =

(b) (i)

Observations	Inferences
Solid dissolves forming a colourless solution. (1/2	The solid is polar $(1/2 \text{ mk})$
mk)	

(ii)

Observations	Inferences
Purple acidified potassium manganate (vii) is decolourised (1 mk)	c = c + c = c + c present (1/2 mk for each)

(iii)

Observations	Inferences
Orange acidified Potassium dichromate (vi) turns to green. (1 mk)	c = c = c or $-c = c$ - present (1/2 mk for each)

(iv)

Observations	Inferences
Effervescence present (1 mk)	H^+ present (1 mk)

(v)	
Observations	Inferences
PH is 5 (1 mk)	Solution is weakly acidic. (1 mk)

Compiled and supplied by Schools Net Kenya P.O.Box 15509-00503, Nairobi-Tel:+254202319748 | E-Mail: infosnkenya@gmail.com | Order answers online at www.schoolsnetkenya.com