MARKING SCHEMES: FORM 2 MID TERM 2 MATHEMATICS

(3 marks)

$$\frac{\frac{4}{5}(3\frac{1}{4}-1\frac{3}{8})\div(2\frac{1}{2}\div5\frac{1}{3})}{\frac{3}{5} \text{ of } 3\frac{1}{5}}$$

Numerator =
$$\frac{4}{5} \left(2 + \frac{1}{4} - \frac{3}{8}\right) \div \left(\frac{5}{2} \times \frac{3}{16}\right)$$

= $\frac{4}{5} \times 1\frac{7}{8} \div \frac{15}{32}$
= $\frac{4}{5} \times \frac{15}{8} \times \frac{32}{15} = \frac{16}{5}$
Denominator = $\frac{3}{5} \times \frac{16}{5} = \frac{48}{25}$

Expression =
$$\frac{16}{5} \div \frac{48}{25} = \frac{16}{5} \times \frac{25}{48} = \frac{5}{3} = 1\frac{2}{3}$$

2. (i) Distance between posts is the HCF of 608 and 264 $608 = 2 \times 2 \times 2 \times 2 \times 2 \times 19$ $264 = 2 \times 2 \times 2 \times 3 \times 11$ HCF= $2^3 = 8$ Distance between posts = 8 m

(ii) Number of posts =
$$\frac{2(1 + b)}{8}$$

= $\frac{2(608 + 264)}{8}$
= $\frac{1744}{8} = 218$

3.

1.

(2 marks)

(2 marks)

(4 marks)

(4 marks)

4.

$$=\frac{4a(c-4a) - b(c-4a)}{c-4a} + 4$$
$$=\frac{(4a-b)(c-4a)}{c-4a} + 4$$
$$= 4a-b+4$$

5.

Buying price (BP) = $\frac{288}{12} \times 10$ = sh 240 Selling price (SP) = $\frac{288}{18} \times 20$ = sh 320 Percentage profit = $\frac{SP - BP}{BP} \times 100$ = $\frac{320 - 240}{240} \times 100$ = $33\frac{1}{3}\%$

(3 marks)

6.

 $3x - 2y = 7 \dots (i) \quad (\text{mult. eqn. (i) by 1} \\ 5x + y = 3 \dots (ii) \quad \text{and eqn. (ii) by 2} \\ \Rightarrow 3x - 2y = 7 \\ 10x + 2y = 6 \\ 13x = 13 \\ x = 1 \\ \text{Subst. for } x \text{ in eqn. (ii)} \\ 5 \times 1 + y = 3 \\ y = 3 - 5 \\ = -2 \\ \text{Hence } x = 1, \ y = -2 \\ \end{cases}$

7. .

(a) In what ratio did it decrease?

 $120\!:\!150 \Longrightarrow\! 4\!:\!5$

(b)

 $new \ width = \frac{4}{5} \times 140cm$ = 112cm

(1 mark)

(2 marks)

8. Given the following currency exchange rate, calculate to 3 significant figures the number of dollars that can be exchanged for 25 Sterling pounds.

1 US dollar (\$) = Ksh 76.85 1 Sterling pound (£) = Ksh 115.30

Convert sterling pounds into Kenya shillings

25 Sterling pounds = Kshs 25×115.30

Now convert Ksh. into dollars = $\frac{25 \times 115.30}{76.85}$

= \$ 37.5

9. .

Volume of tank = $\pi r^2 h$ where r = 70 cm, h = 80 cm = $\frac{22}{7} \times \frac{70 \times 70 \times 80}{1000}$ litres = 1 232 litres Fraction filled = $\frac{492.8}{1232}$ = $\frac{4928}{12320}$ = $\frac{2}{5}$

10.

Let daughter's age be y years \Rightarrow man's age is 3y years. In 12 years time: daughter will be (y + 12) years old and man will be (3y + 12) years old

 $\therefore 3y + 12 = 2(y + 12)$ 3y + 12 = 2y + 24 $3y - 2y = 24 - 12 \implies y = 12$

Hence daugher's age is 12 years and man's age is 36 years.

(3 marks)

11. .

5.81 = 5.81818181.....Let r = 5.81818181.....(i)then 100 r = 581.818181.....(ii)Subtract eqn. (i) from eqn. (ii). 99r = 576 $r = \frac{576}{99}$ $= \frac{64}{11}$ or $5\frac{9}{11}$ (3 marks)

(4 marks)

12. .

Marked price (MP) = sh 450
Selling price (SP) = sh 393.75
% discount =
$$\frac{MP - SP}{MP} \times 100$$

= $\frac{450 - 393.75}{450} \times 100$
= $\frac{56.25}{450} \times 100$
= 12.5%
(3 marks)

13. .

4 cm on map represents 20 km 1 cm on map represents 5 km = 5000 m $2.8 \text{ cm on map rep. } 2.8 \times 5\ 000 = 14\ 000 \text{ m}$ ļ 1.6 cm on map rep. $1.6 \times 5\ 000 = 8\ 000 \text{ m}$:. Area of ranch = $14\ 000 \times 8\ 000\ m^2$ $= \ \frac{14\ 000 \times 8\ 000}{10^4}$ = 11 200 ha

14. .

Fraction spent on food & rent $= \frac{1}{3} + \frac{1}{4} = \frac{4+3}{12} = \frac{7}{12}$ Remainder $= 1 - \frac{7}{12} = \frac{5}{12}$ Fraction spent on transport $= \frac{3}{5}$ of $\frac{5}{12} = \frac{3}{5} \times \frac{5}{12} = \frac{1}{4}$ Fraction saved $= \frac{5}{12} - \frac{1}{4} = \frac{5-3}{12} = \frac{2}{12}$ or $\frac{1}{6}$ $\therefore \frac{1}{4}$ of salary $= \text{ sh } 1\ 800$

(4 marks)

15.

$$base Area = \frac{22}{7} \times 14 \times 14 \times \frac{1}{2} \times 2 + 40 \times 28$$

= 1736cm²
curved surface area = $\left(\frac{22}{7} \times 28 \times \frac{1}{2} + 40 + \frac{22}{7} \times 28 \times \frac{1}{2} + 40\right) \times 30$
= 5040cm²
total area = 1736 + 5040 + 1736 = 8512cm²
Metal needed = $\frac{110}{100} \times 8512 = 9363.2cm^{2}$

16. .

(a) angle
$$PTR = 15 + 20 = 35^{\circ}$$
 (2 marks)

(b)

$$\angle 20 + 90 + \angle QYP + (180 - 35) = 360$$

 $\angle QYP = 105^{\circ}$

(3 marks)

(2 marks)

(d) What is the radius of this circle?

radius = 5.2 ± 0.1 cm

(iii) distance PR = $9.5 \times 5 = 47.5 \pm 0.5$ m.

(2 marks)

(2 marks) (2 marks)

(a) Wholesaler paid $\frac{120}{100} \times 500 = \text{sh } 600$ Retailer paid $\frac{130}{100} \times 600 = \text{sh } 780$ Customer paid $\frac{150}{100} \times 780$ $= \text{sh } 1 \ 170$

(b) Let the amount paid by wholesaler be x Retailer paid $\frac{130}{100}x = 1.3x$ Customer paid $\frac{150}{100} \times 1.3x = 1.95x$ $\therefore 1.95x = 1560$ $x = \frac{1560}{1.95}$ = sh 800

(c) Without the sale customer would have paid $1\ 000 \times \frac{120}{100} \times \frac{130}{100} \times \frac{150}{100} = \text{ sh } 2\ 340$ Less 10% reduction $=\frac{90}{100} \times 2\ 340$ \Rightarrow Selling price (SP) $= \text{ sh } 2\ 106$ Buying price (BP) for retailer $=1\ 000 \times \frac{120}{100} \times \frac{130}{100}$

= sh 1 560

$$\therefore$$
 % profit = $\frac{2 \ 106 - 1 \ 560}{1 \ 560} \times 100$
= 35%

20. . (a).

(a) Area of front & back walls
$$= 6.3 \times 3.2 \times 2$$

 $= 40.32 \text{ m}^2$
Area of side walls $= 4.5 \times 3.2 \times 2$
 $= 28.8 \text{ m}^2$
Area of floor $= 6.3 \times 4.5$
 $= 28.35 \text{ m}^2$
Total area of floor and walls
 $= 40.32 + 28.8 + 28.35$
 $= 97.47 \text{ m}^2$
Area of door $= 1.85 \times 0.8 = 1.48 \text{ m}^2$
Area of windows $= 1.5 \times 0.7 \times 4 = 4.2 \text{ m}^2$
Total area not cemented $= 1.48 + 4.2$
 $= 5.68 \text{ m}^2$
 \therefore Area to be cemented $= 97.47 - 5.68$
 $= 91.79 = 91.8 \text{ m}^2$

(3 marks)

(4 marks)

(5 marks)

(b) Cost of cementing materials = 91.8×500 = sh 45 900

(c) Cost of labour =
$$20\%$$
 of sh 45 900
= $\frac{20}{100} \times 45 900$ (3 marks)
= sh 9 180
Total cost of cementing = $45 900 + 9 180$
= sh 55 080
21. (a) (i) Mombas to Mitio Andei time
= $(2400 - 1930) + 2:50 = 4:30 + 2:50$
= 7 h 20 min
(ii) Mitio Andei to Nairobi time
= $1050 - 0335 = 7 h 15 min$
(iii) Nairobi to Nakuru time
= $1900 - 1240 = 6 h 20 min$
(iv) Nakuru to Kisumu time
= $(2400 - 2015) + 9:00 = 3.45 + 9$
= $12 h 45 min$
(b) Calculate the total time for the whole journey.
(b) Stoppage time at Mitio Andei
= $0335 - 0250 = 45 min$
Stoppage time at Mitio Andei
= $2015 - 1900 = 1 h 15 min$
Total stoppage time
= $45 min + 1 h 50 min + 1 h 15 min$
Travelling time for Mombasa to Kisumu
= $7 h 20 min + 7 h 15 min + 6 h 20 min$
Travelling time for Mombasa to Kisumu
= $7 h 20 min + 7 h 15 min + 6 h 20 min + 1 h 50 min$
Travelling time for Mombasa to Kisumu
= $7 h 20 min + 7 h 15 min + 6 h 20 min + 1 h 50 min + 23 h 40 min + 7 h 50 min + 33 h 40 min + 3 h 50 min + 37 h 30 min$

(c) Average speed =
$$\frac{\text{Distance covered}}{\text{Time taken}} = \frac{1\ 200}{37.5}$$

= 32 km/h

(2 marks)

(a) The diagram b low is a sketch of the metal sheet with the removed parts. To form the cuboid the remaining part is folded along the dotted lines.

- (i) Area of whole sheet = $80 \times 50 \text{ cm}^2$ Area of sheet removed = $5 \times 5 \times 4 \text{ cm}^2$ \therefore area of remaining part = $(80 \times 50) - (5 \times 5 \times 4)$ = $4\ 000 - 100$ = $3\ 900\ \text{cm}^2$
- (ii) Volume of metal in cuboid = $3\ 900 \times 0.2$ = $780\ \text{cm}^3$ Mass of empty cuboid = mass of metal = volume × density = $780 \times 2.5\ \text{g}$ = $\frac{780 \times 2.5}{1000}\ \text{kg}$ = $1.95\ \text{kg}$
- (b) Dimensions of cuboid are l = 80 10 = 70 cm, w = 50 - 10 = 40 cm, h = 5 cm Capacity of cuboid = $70 \times 40 \times 5$ cm³ Mass of water = volume × density $= 70 \times 40 \times 5 \times 1$ g $= \frac{70 \times 40 \times 5 \times 1}{1000}$ kg = 14 kg
 - $\therefore \text{Mass of cuboid and water} = 14 + 1.95$ = 15.95 kg

23. .

(i)	x	-2	-1	0	1	2	3	4	5
	y	13	10	7	4	1	-2	-5	-8
			2~ 0	D					
		<i>y</i> =	2x - 8	8					
(ii)	x	<i>y</i> =	2x - 8	8	2	4	6	8	1(

(b) Scale used:

Horizontal axis: 1 cm rep. 2 units Vertical axis : 2 cm rep. 5 units (4 marks)

(4 marks)

(c) Both graphs are straight lines (d) x = 3, y = -2 (1 mark) (1 mark)

24.

AP = 40 m AQ = 100 m AR = 130 m AD = 250 m PB = 80 m QE = 60 m RC = 180 m		
a of triangle APB	$=\frac{1}{2} \times 40 \times 80 \text{ m}^2 = 1\ 600 \text{ m}^2$	
a of triangle AOE	$1 \times 100 \times 00 m^2$ $0.000 m^2$	

(10 marks)

	Area of triangle APB	$=\frac{1}{2}$	x 40 x	(80 m²	=	1 600 m ²	
	Area of triangle AQE	$=\frac{1}{2}$	x 100	x 60 m²	=	3 000 m²	
	Area of trapezium BPRC	$=\frac{1}{2}$	(80 +	100) 90 m ²	=	8 100 m ²	
	Area of triangle DQE	$=\frac{1}{2}$	x 150	x 60 m²	=	4 500 m ²	!
	Area of triangle DRC	$=\frac{1}{2}$	x 120	x 100 m ²	=	6 000 m²	
By addition, area of ABCDE					=	23 200 m ²	!
	\therefore area of field = 2.32 ha	a					
				-			