232/2 PHYSICS. PAPER 2 (THEORY) MARKING SCHEME FORM 3

1.	SECTION A	
1.	A luminous source of light emits light while a non-luminous source reflects light \checkmark	
		1mk
2.	Electrons are repelled from the cap and flow to the leaf and plate. ✓ Repulsion between	
	the electrons on the plate and those on the leaf causes the leaf to rise. \checkmark	
		2mks
3.	$f = \frac{Number of waves}{Time \ taken} \checkmark = \frac{\frac{1^{3}}{4}}{35 \times 10^{-3}} = 50H_{3}\checkmark$	
	$f = \frac{74}{7} = 50H_3 \checkmark$	
	Alt.	0.1
	$f = \frac{1}{T} = \frac{1}{(0.05 - 5) \times 10^{-3}} = 50 \text{H}_3 \checkmark$	2mks
4.	Width of the aperture/ slit should be approximately or nearly equal to λ of the incident	
	wave;	
_		2mks
5.	Slope = $\frac{0.9 - 0.4}{3 - 7}$ \checkmark = $-\frac{1}{f}$ \checkmark	
	3-7 f	
	0.5 0.125	3mks
	$=-\frac{0.5}{5}=0.125$	JIIKS
	$f = 8 cm \checkmark$	
6.	$f = 8 \text{ cm} \checkmark$ $P = \frac{V^2}{R} \checkmark \qquad R = \frac{V^2}{P} = \frac{240^2}{2500}$	
	$P = \frac{1}{R} \checkmark \qquad R = \frac{1}{P} = \frac{1}{2500}$	
	$=23.04\Omega$ \checkmark	2mks
7.		
		1mk
8.	Repulsion only occurs between like poles of magnets while attract also occur between a	
	magnet and a magnetic material	1mk

1

		1
9.		1mk
10.	Hydrogen gas bubbles form around the positive plate. \checkmark The hydrogen gas insulates the positive plate thus increasing internal resistance \checkmark	2mks
11.	Electrons are attracted towards the rod leaving the atoms at the other end of the ball with not positive changes	2mks
	with net positive charges Trees absorb sound	1mks
12.	In conductor the resistance increases with increase \checkmark in temperature while in a	
12	semiconductor the resistance reduces with increase in temperature.	1mk
13.	$E = Ir + IR \checkmark$ $= 2 \times 0.5 + 2 \times 10$ $= 11V \checkmark$	2mks
	SECTION B	
14.	(a) (i) The ratio of the sine of angle of incidence to the sine of angle of refraction is a constant for a pair of media	1mk
	 (ii) – Do not absorb light energy like mirrors Not affected by thickness as mirrors 	2mks
	- Do not wear off like the peeling of siyvering on mirror. (b) (i) $k^n w = k^n a a^n w$ $= \underbrace{1}_{1.44} x \ 1.33 = 0.9236$ (ii) $i = 70^0$ <u>Sini</u> = 0.9236	3mks
	Sinr Sinr Sin $r = \frac{\sin 70^0}{0.9236} = 1.0174$ r is greater than 90 ⁰ hence the light reflection	3mks
	 (iii) The different colours travel at different velocities hence would have different angles of refraction and are dispersed (iv) The eye would see a spectrum since the light rays are dispersed in the kerosene layer and are internally reflected at the kerosene – water surface the eye would see a spectrum at the surface 	1mks 2mks

15.	(a) Current flowing through a conductor is directly proportional to the potential difference across it provided the temperature and other physical conditions are kept	1 mk
	 constant (b) (i) The work done in driving charges through the coil is high due to its resistance. This energy is converted into heat in the coil 	2mks
	(ii) $V = IR$ $R = \frac{V}{I}$ $= \frac{12V}{2.4}$	
	$1 \qquad 2.4 \\ = 5.0\Omega$	3mks
	(iii) H = VIt	JIIKS
	$H = 12 \times 2.4 \times 60$	3mks
	= 1728J	C IIIIIS
	(iv) – Using a source with higher emf	
	- Reducing the length of the coil	2mks
	$=\mathbf{P}=\underline{\mathbf{V}^2}$	
	R	
16.	(a) capacitance c is the charge stored in a capacitor per unit voltage	1mk
	(i) the deflection of the leaf decreases since the pd reduces with the distance of separation, the greater the deflection, the smaller the	2 mlra
	distance of separation, the greater the deflection, the smaller the capacitance.	2mks
	(ii) the deflection of the decreases since the pd increases with the	
	area of overlaps or the greater the deflection the smaller the	2mks
	capacitance.	
	(iii) the deflection of the leaf decreases, the capacitance increases	
	,since the smaller the deflection the greater the capacitance.	2mks
	$C = C + C_2 C_3 \swarrow 1$	
	$C_{\mathrm{T}} = C_1 + \frac{C_2 C_3}{C_2 + C_3} \checkmark 1$	
		21
	$=3\mu F + \frac{4\times4}{4+4}\checkmark 1$	3mks
	$=3 \mu F+2 \mu F \checkmark 1$	
	$=5 \mu f \checkmark 1$	
	Charge on the 3 μ F capacitor is the same as the overall charge Q =CV \checkmark 1	
	$=5.0 \times 10 \sqrt{1}$	
	$=5.0 \times 10^{-1}$ =50C \checkmark 1	3mks
17.	T = 36	
	$(a)(i)T = \frac{T}{20} = \frac{36}{20} = 1.8s$	2mks
	$(ii) f = \frac{1}{T} = \frac{1}{1.8} = 0.5556 Hz$	3mks
	$(c) 80 cm \Rightarrow S4\lambda$	
	$V = f\lambda$	2ml-a
		3mks
	$=\frac{1}{1.8} \times 0.2 = 0.111 m/s$	
	1.8	
		1

18.	 a)- A small force (effort) is used to overcome a large force (Load) - Less energy is expended in doing work - Less time is used in accomplishing the task 	2mks
	b) (i) - In one revolution, both wheel and axle complete one circumference - V.R = Effort Distance/Load distance = $2 \prod R/2 \prod r$ - V.R = R/r	3mks
	(ii) V.R = $50/5 = 10$ M.A = efficiency x V.R/ $100 = 90x10/100 = 9$ Effort = Load/M.A = $200/9 = 22.22N$ c) Gas Pressure = At.Pressure – Pressure due to H _g Volume	3mks
	$P_{g} = 1.0x10^{5} - 0.4 x 13600x10$ = 94560N/m ²	3mks
	d) By lowering the temperature of the liquid	1mk