FORM 2 MATHEMATICS MARKING SCHEMES:

1. (3 marks)

$$\frac{\frac{\frac{4}{5}(3\frac{1}{4}-1\frac{3}{8})\div(2\frac{1}{2}\div5\frac{1}{3})}{\frac{3}{5}\text{ of }3\frac{1}{5}}$$

Numerator = $\frac{4}{5} (2 + \frac{1}{4} - \frac{3}{8}) \div (\frac{5}{2} \times \frac{3}{16})$ $=\frac{4}{5} \times 1\frac{7}{8} \div \frac{15}{32}$ $=\frac{4}{5} \times \frac{15}{8} \times \frac{32}{15} = \frac{16}{5}$

Denominator = $\frac{3}{5}$ x $\frac{16}{5}$ = $\frac{48}{25}$

Expression = $\frac{16}{5} \div \frac{48}{25} = \frac{16}{5} \times \frac{25}{48} = \frac{5}{3} = 1\frac{2}{3}$

(2 marks) Distance between posts is the HCF of 608 and 264 $608 = 2 \times 2 \times 2 \times 2 \times 2 \times 19$

 $264 = 2 \times 2 \times 2 \times 3 \times 11$

 $HCF = 2^3 = 8$

Distance between posts = 8 m

(2 marks) (ii) Number of posts = $\frac{2(1+b)}{8}$ $=\frac{2(608+264)}{8}$ $=\frac{1744}{8}=218$

3. (4 marks) Scale: 1 cm rep 30 km

Bearing of S from P 72°

Distance of S from $P = 6.3 \text{ cm} \times 30 = 189 \text{ km}$

4.
$$= \frac{4a \cdot (-4a) - b \cdot (-4a)}{c - 4a} + 4$$

$$= \frac{4a - b \cdot (-4a)}{c - 4a} + 4$$

$$= \frac{(3 \text{ marks})}{c - 4a} + 4$$

Buying price (BP) =
$$\frac{288}{12} \times 10 = \text{sh } 240$$

Selling price (SP) = $\frac{288}{18} \times 20 = \text{sh } 320$
Percentage profit = $\frac{\text{SP} - \text{BP}}{\text{BP}} \times 100$
= $\frac{320 - 240}{240} \times 100$

6. (3 marks)

 $= 33\frac{1}{3}\%$

$$3x - 2y = 7 \dots (i) \quad \text{(mult. eqn. (i) by 1}$$

$$5x + y = 3 \dots (ii) \quad \text{and eqn. (ii) by 2}$$

$$\Rightarrow 3x - 2y = 7$$

$$10x + 2y = 6$$

$$13x = 13$$

$$x = 1$$

Subst. for x in eqn. (ii)

$$5 \times 1 + y = 3$$
$$y = 3 - 5$$
$$= -2$$

Hence x = 1, y = -2

7. .

(a) In what ratio did it decrease?

 $120:150 \Rightarrow 4:5$

(b) (2 marks)

(1 mark)

 $new \ width = \frac{4}{5} \times 140cm$ = 112cm

8.	Given the following currency exchange rate, calculate to 3 significant figures the number of dollars that
	an be exchanged for 25 Sterling pounds.

Convert sterling pounds into Kenya shillings

25 Sterling pounds = Kshs 25×115.30

Now convert Ksh. into dollars =
$$\frac{25 \times 115.30}{76.85}$$

= \$ 37.5

9. .

(4 marks)

Volume of tank =
$$\pi r^2 h$$
 where $r = 70$ cm, $h = 80$ cm
= $\frac{22}{7} \times \frac{70 \times 70 \times 80}{1000}$ litres
= 1 232 litres
Fraction filled = $\frac{492.8}{1232}$
= $\frac{4928}{12320}$

10. . (3 marks)

Let daughter's age be y years \Rightarrow man's age is 3y years.

In 12 years time: daughter will be (y + 12) years old and man will be (3y + 12) years old

$$3y + 12 = 2(y + 12)$$
$$3y + 12 = 2y + 24$$

$$3y - 2y = 24 - 12 \implies y = 12$$

Hence daugher's age is 12 years and man's age is 36 years.

11. (3 marks)

$$5.\dot{8}\dot{1} = 5.81818181...$$

Let $r = 5.8\dot{1}818181...$ (i)

then $100 r = 581.818181...$ (ii)

Subtract eqn. (i) from eqn. (ii).

$$99r = 576$$

$$r = \frac{576}{99}$$

$$= \frac{64}{11} \text{ or } 5\frac{9}{11}$$

12. (3 marks)

Marked price (MP) = sh 450
Selling price (SP) = sh 393.75
% discount =
$$\frac{MP - SP}{MP} \times 100$$

= $\frac{450 - 393.75}{450} \times 100$
= $\frac{56.25}{450} \times 100$

13. (3 marks)

4 cm on map represents 20 km

1 cm on map represents 5 km = 5000 m

2.8 cm on map rep. $2.8 \times 5\ 000 = 14\ 000\ m$ 1.6 cm on map rep. $1.6 \times 5\ 000 = 8\ 000\ m$

map rep.
$$1.6 \times 5000 = 8000 \text{ m}$$

$$\therefore \text{ Area of ranch} = 14000 \times 8000 \text{ m}^2$$

$$= \frac{14000 \times 8000}{10^4}$$

$$= 11200 \text{ ha}$$

14. . (3 marks)

Fraction spent on food & rent = $\frac{1}{3} + \frac{1}{4} = \frac{4+3}{12} = \frac{7}{12}$ Remainder = $1 - \frac{7}{12} = \frac{5}{12}$

Fraction spent on transport $=\frac{3}{5}$ of $\frac{5}{12}=\frac{3}{5}\times\frac{5}{12}=\frac{1}{4}$

Fraction saved = $\frac{5}{12} - \frac{1}{4} = \frac{5-3}{12} = \frac{2}{12}$ or $\frac{1}{6}$

$$\therefore \frac{1}{4} \text{ of salary} = \text{sh } 1800$$

15. . (4 marks)

base Area =
$$\frac{22}{7} \times 14 \times 14 \times \frac{1}{2} \times 2 + 40 \times 28$$

= $1736cm^2$

curved surface
$$area = \left(\frac{22}{7} \times 28 \times \frac{1}{2} + 40 + \frac{22}{7} \times 28 \times \frac{1}{2} + 40\right) \times 30$$

= $5040cm^2$

total area = $1736 + 5040 + 1736 = 8512cm^2$

Metal needed =
$$\frac{110}{100} \times 8512 = 9363.2cm^2$$

16. .

(a)
$$angle PTR = 15 + 20 = 35^{\circ}$$
 (2 marks)

17. (a)

 $\angle ACB = 122^{\circ} \pm 1^{\circ}$

(c) Construct a circle that passes through A, B and C.

(3 marks)

(2 marks)

(4 marks)

(d) What is the radius of this circle?

(1 mark)

 $radius = 5.2 \pm 0.1cm$

18. .(a)

(b)

(i) height TR $= 5.5 \times 5 = 27.5 \pm 0.5 \text{ m}.$ (2 marks)

(ii) distance QR = $5.5 \times 5 = 27.5 \pm 0.5$ m.

(iii) distance PR = $9.5 \times 5 = 47.5 \pm 0.5$ m.

(2 marks) (2 marks)

19. . (a) . (3 marks)

NOIMMUI

(a) Wholesaler paid
$$\frac{120}{100} \times 500 = \text{sh } 600$$

Retailer paid $\frac{130}{100} \times 600 = \text{sh } 780$
Customer paid $\frac{150}{100} \times 780$
 $= \text{sh } 1 170$

(b) Let the amount paid by wholesaler be x

Retailer paid
$$\frac{130}{100}x = 1.3x$$

Customer paid $\frac{150}{100} \times 1.3x = 1.95x$
 $\therefore 1.95x = 1560$
 $x = \frac{1560}{1.95}$

= sh 800

(c) Without the sale customer would have paid

$$1\ 000 \times \frac{120}{100} \times \frac{130}{100} \times \frac{150}{100} = \text{sh } 2\ 340$$

Less 10% reduction = $\frac{90}{100} \times 2340$

 \Rightarrow Selling price (SP) = sh 2 106

Buying price (BP) for retailer

$$= 1\ 000 \times \frac{120}{100} \times \frac{130}{100}$$

$$= \text{ sh } 1\ 560$$

$$\therefore \text{ % profit } = \frac{2\ 106 - 1\ 560}{1\ 560} \times 100$$

$$= 35\%$$

20. . (a).

(5 marks)

(a) Area of front & back walls =
$$6.3 \times 3.2 \times 2$$

= 40.32 m^2
Area of side walls = $4.5 \times 3.2 \times 2$
= 28.8 m^2
Area of floor = 6.3×4.5
= 28.35 m^2

Total area of floor and walls

$$= 40.32 + 28.8 + 28.35$$
$$= 97.47 \text{ m}^2$$

Area of door = $1.85 \times 0.8 = 1.48 \text{ m}^2$

Area of windows = $1.5 \times 0.7 \times 4 = 4.2 \text{ m}^2$

Total area not cemented = 1.48 + 4.2= 5.68 m^2

 \therefore Area to be cemented = 97.47 - 5.68

 $= 91.79 = 91.8 \text{ m}^2$

(2 marks)

(3 marks)

(4 marks)

(c) Average speed = $\frac{\text{Distance covered}}{\text{Time taken}} = \frac{1200}{37.5}$ = 32 km/h

= 33 h 40 min

= 37 h 30 min

Time for whole journey

6 h 20 min + 12 h 45 min

= 33 h 40 min + 3h 50 min

(2 marks)

22. .

(2 marks)

(a) The diagram b low is a sketch of the metal sheet with the removed parts. To form the cuboid the remaining part is folded along the dotted lines.

(i) Area of whole sheet = $80 \times 50 \text{ cm}^2$ Area of sheet removed = $5 \times 5 \times 4 \text{ cm}^2$

: area of remaining part

$$= (80 \times 50) - (5 \times 5 \times 4)$$
$$= 4000 - 100$$

 $= 3900 \text{ cm}^2$

- (ii) Volume of metal in cuboid = $3\,900 \times 0.2$ = $780\,\mathrm{cm^3}$ Mass of empty cuboid = mass of metal = volume × density = $780 \times 2.5\,\mathrm{g}$ = $\frac{780 \times 2.5}{1000}\,\mathrm{kg}$

= 1.95 kg

(4 marks)

(4 marks)

(b) Dimensions of cuboid are l = 80 - 10 = 70 cm, w = 50 - 10 = 40 cm, h = 5 cm Capacity of cuboid = $70 \times 40 \times 5$ cm³ Mass of water = volume × density = $70 \times 40 \times 5 \times 1$ g

$$= 70 \times 40 \times 5 \times 1 \text{ g}$$

$$= \frac{70 \times 40 \times 5 \times 1}{1000} \text{ kg}$$

= 14 kg

:. Mass of cuboid and water =
$$14 + 1.95$$

= 15.95 kg

23. .

	y = 7 - 3x									
(i)	x	-2	-1	0	1	2	3	4	5	
	. y	13	10	7	4	1	-2	-5	-8	

$$y = 2x - 8$$

(ii)	х	-4	-2	0	2	4	6	8	10	
	y	-16	-12	-8	-4	0	4	8	12	

(b) Scale used:

Horizontal axis: 1 cm rep. 2 units

Vertical axis: 2 cm rep. 5 units

(4 marks)

(c) Both graphs are straight lines

(d) x = 3, y = -2 (1 mark)

24.

AP = 40 m AQ = 100 m AR = 130 m AD = 250 m PB = 80 m QE = 60 m RC = 180 m

(1 mark)

Area of triangle APB $= \frac{1}{2} \times 40 \times 80 \text{ m}^2 = 1600 \text{ m}^2$ Area of triangle AQE $= \frac{1}{2} \times 100 \times 60 \text{ m}^2 = 3000 \text{ m}^2$ Area of triangle BPRC $= \frac{1}{2} (80 + 100) 90 \text{ m}^2 = 8100 \text{ m}^2$ Area of triangle DQE $= \frac{1}{2} \times 150 \times 60 \text{ m}^2 = 4500 \text{ m}^2$ Area of triangle DRC $= \frac{1}{2} \times 120 \times 100 \text{ m}^2 = 6000 \text{ m}^2$ By addition, area of ABCDE $= 23200 \text{ m}^2$

: area of field = 2.32 ha