CHEMISTRY PAPER 2 MARKING SCHEME

FORM 3 END-TERM I EXAM

2017

Compiled by Schools Net Kenya (SNK) | P.O. Box 8076 – 00200, Nairobi Coordinated by KENPRO, Macjo Arcade, 4th Floor, Suite 15E, Osiligi House,Ground Floor Off Magadi Road, Ongata Rongai |Tel: +254202319748 | +254 711 88 22 27

Website: <u>www.schoolsnetkenya.com</u>

E-mail: infosnkenya@gmail.com |

1.(a) (i) Element A and B

- Both have 6 electrons to achieve an octet.

- (ii) Oxide of B forms an alkaline solution that turns red litmus blue. Oxide of D forms acidic solution, that turns blue litmus red.
- (iii) E has a bigger ionic radius than the ionic radius of C.
 - E forms ions / ionizes by gaining electrons; which C ionizes by lose of electrons.
- (iv) Formula; $GH_2 \checkmark 1$ (Rej H_2G)
- (v) Oxide of D is molecular with weaker vanderwaals forces, while the oxide of B is a giant ionic structure

with stronger ionic bonds.

stronger ion									
(vi) $GCO_{3(S)}$ GO _(S) +CO _{2(g)} $\checkmark 1$ (b) $B + Cl_2BCl_2$									
(0)	$B + Cl_2BCl_2$ 1.5 litres of Cl ₂ $5.9375 \text{ of } BCl_2$								
	24 litres of $Cl_2 = (5.9375 \times \frac{24}{1.5})g BCl_2$								
			1.3	= 95g					
	RFM of $BCl_2 = 95$								
	RAM of BCl ₂ = 95-71=24 Or								
	$B + Cl_2BCl_2$								
	Moles of $\overline{\text{Cl}_2 \text{ used}} = \frac{1.5}{24} = 0.0625 \text{ moles}$								
	$0.0625 \text{ moles } \text{Cl}_2 = 5.9375 \text{g BCl}_2$								
	$1 \text{ mole} = \left(\frac{5.9377 g}{0.0625}\right)$								
$=95g of BCl_2$									
RAM of B = $95 - 71 = 24.(a)$ Gas A – Carbon (iv) oxide									
	√ ½								
	2.Gas B – Ammonia gas								√ ¼ ₂
(b)	Liquid C – Ammonium Chloride Solution								√ ½
	Solid D - Sodium Hydrogen Carbonate								√ ½
(c)	$NH_4HCO_{3(aq)} + NaCl_{(aq)} \rightarrow NaHCO_{3(s)} + NH_4Cl_{(aq)}$								
	Ca (OH) $_{2(aq)}$ + 2NH ₄ Cl $_{(aq)}$ \longrightarrow CaCl $_{2(aq)}$ ++ 2NH _{3 (g)} + 2H ₂ O $_{(I)}$								
				Penalize	¼✓ if not balan	ce			
	$\frac{1}{2}$ if there are no states								
(d)	Ammonia	-	Manufa	octure of fertilizers					
		-	Manufa	octure of Nitric acid					
		-	Refrige	rant					
		-	Softenii	ng water					
	CaCl ₂	-	Drying a	agent			Name	√ 1	
							Use	√ 1	
(e)	- Making	g of glass				٦			

- Softening water
- Making sodium silicate used in making detergents any two√1
- Paper Industry
- 3.(i) Condenser
- (ii) To indicate when a liquid is boiling, a thermometer reads a constant temperature

(iii) A

(iv) Ethanol 🗸

Reason:- It has a lower boiling of 78°C compared to water with a boiling point of 100°C

or - The liquid with the lower boiling point boils first and its vapours are condensed

and the condenser to be collected as the first distillate

 \checkmark

(v) Fractional distillation

(vi) - To separate components of crude oil

- To isolate O₂ and N₂ from air
- To manufacture spirits

(vii)- They are immiscible liquids

- They have different but close boiling points
- 4.a) To remove any magnesium oxide coating from the surface of magnesium// To remove any

 \checkmark

oxide film on it

b) White solid which is magnesium oxide

- c) Increase in mass was due to oxygen which combined with magnesium
- d) $2Mg(s) + O_{2(g)}$ _____ 2MgO(s)

Penalize ½ for wrong or missing state symbols

e) The filtrate is magnesium hydroxide which is an alkaline

Red litmus paper changed blue, but blue litmus paper remained blue

||.a) $N_2O \sqrt{1}$ (Nitrogen (I) oxide) – Denitrogen Oxide.

- b) $K_2O \sqrt{1}$ (Potassium oxide)
- c) Al₂O₃ (Aluminium oxide)

(i) Yellow lead (II) oxide turned to red then grey.

(ii) I. $H_{2(g)} + PbO_{(s)} \longrightarrow H_2O_{(l)} + Pb_{(s)}$

II. $2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(I)}$

(iii) Reducing properties of hydrogen

Combustion nature of hydrogen

(b) M is hydrogen

(c) Conc. H_2SO_4 is a less volatile hence displaces a more volatile and from its salts i.e

(a) 5 electrons

(b) 11-5 = 6 neutrons

a) $3 M_g + N_{2g}$ $M_{g3} N_{2g}$

b) Argon

- It is inert

c)Haber process to manufacture ammonia

Hydrogenation

Welding

6.a) magnesium Oxide

b) 2Mg_(s) + O2_(g) _____ 2MgO_(s)

c) i) Sodium sulphate

ii) MgCO₃

d) $MgO_{(s)} + H_2SO_{4(aq)} - M_gSO_{4(aq)} + H_2O_{(L)}$

e) $Mg^{2+}_{(aq)} + CO^{2-}_{3(aq)} M_g CO_{3(s)}$

f) $M_g CO_{3(g)}$ _____ $M_g O_{(g)} + CO_{2(g)}$

g) Na⁺ ions and SO₄²⁻ ions

h) Precipitation/ double decomposition

7.

- (i) Z- Anhydrous calcium chloride $\sqrt{1mk}$
 - Q-Water
- (ii) Reducing agent / effect $\sqrt{1mk}$

Combustible gases / burning of hydrogen in air.

- (iii) The flame should be blown out $\sqrt{\frac{1}{2}} mk$ first as the supply of hydrogen continues to avoid explosion. $\sqrt{\frac{1}{2}}$ Heating of CuO should be $\sqrt{\frac{1}{2}} mk$ stopped to prevent re-oxidation $\sqrt{\frac{1}{2}} mk$ of hot copper before $\sqrt{\frac{1}{2}} mk$ the supply of hydrogen is stopped.
- (iv) Hydrogen so produced is at once oxidized to water $\sqrt{1mk}$ (strong oxidizing agent) Likelyhood of producing poisonous gases such as nitrogen (IV) oxide. $\sqrt{1mk}$
- a) Water molecules has lone pairs $\sqrt{1mk}$ of electrons which can be donated \sqrt{mk} and be shared with H⁺ to form H₃O⁺
- **b**) Is less dense than air / lighter than air. $\sqrt{1mk}$