CHEMISTRY PAPER 1 MARKING SCHEME FORM 3 END-TERM I EXAM 2017

Combiled by Schools Net Kenya (SNK) | P.O. Box 8076 – 00200, Nairobi Coordinated by KENPRO, Macjo Arcade, 4th Floor, Suite 15E, Osiligi House,Ground Floor Off Magadi Road, Ongata Rongai | Tel: +254202319748 | +254 711 88 22 27 Website: <u>www.schoolsnetkenya.com</u> E-mail: infosnkenya@gmail.com | 1.a)Ionization energy is the energy required to remove an election from \checkmark 1 atom in gaseous

state while electron affinity is the energy required by an atom $\checkmark 1$ to require an electron in gaseous state.

b)B is higher / greater $\checkmark \frac{1}{2}$ than A because A is smaller atom therefore its nuclear attract electrons strongly $\checkmark \frac{1}{2}$

2. i)

$$\begin{array}{cccccccc} H & H & H \\ H & - C - & C - & C - & O - H & \checkmark 1 \\ H & H & H & H \end{array}$$

ii) Dehydration
$$\checkmark 1$$

iii)
$$C_6H_{12}\checkmark 1$$

- 3.a) Covalent bond $\checkmark 1$
 - b) Giant atomic structure $\checkmark 1$

c)Hard $\checkmark 1$ high density // high melting points Silicon and oxygen $\checkmark 1$ atoms are compactly held by strong covalent bonds throughout its structure

- 4. Add ✓ ½ excess lead (II) carbonate to dilute nitric (V) acid
 - Filter \checkmark 1/2 to remove excess \checkmark 1/2 unreacted lead (II) carbonate
 - Add \checkmark ¹/₂ dilute hydrochloric acid to the filtrate
 - Filtre \checkmark $\frac{1}{2}$ and dry \checkmark $\frac{1}{2}$ the residue
- 5a) The rate of diffusion of a gas is inversely ✓1 proportional to the square root of its density provide temperature and pressure are kept constant

$$\frac{RNH_{3}}{RxH_{3}}\sqrt{\frac{N_{x}H_{3}}{M_{N}H_{3}}} = 1.41$$

$$\sqrt{\frac{M_{x}H_{3}}{17}} = 1.41^{2}$$

$$\frac{M_{x}H_{3}}{17} = 1.41^{2}$$

$$M_{x}H_{3} = 17 \times 1.14^{2}$$

$$= 33.7977$$

$$RAM of \times = 33.7977 - 3$$

$$= 28.7977$$

Fe	0	
7	3	2:3
7/56	$\frac{3}{6}$	Fe ₂ O ₃
0.125	0.1875	
0.125	0.125	
	1/2	
	1.5	

6.

b)

8.a)Me	easure of	of acidity or basically of an aqueous solution \checkmark	(1mk)
b)	B✓		(1m
c)	10		(1m
10. (a)	(i)	Ionic bond ✓1	
		(ii) Covalent bond $\checkmark 1$	
	(b)	$T \checkmark \frac{1}{2}$ and $W \checkmark \frac{1}{2}$ (a)	
11 2H	$O_{2(ac)}$	$2H_2Q_{(1)} + Q_{2(2)} \checkmark 1$	
11.2112	$\mathbf{C}_{2(aq)}$	- U.B eqn zero mk	
		- Penalise ¹ / ₂ mk for wrong or missing s.s	
	(b)	Manganese (IV) oxide $\checkmark 1$	
	(c)	- Used in welding and cutting metals as oxyacetyline/ ox	xyhydrogen.
		- Used to remove Iron impurities during steel making	(Any 1 x 1mk) a)
12.a)O	n the d	iagram (left hand electrode)	
	b)	$Pb_{(s)} \longrightarrow Pb^{2+}_{(aq)} + 2e 2e^{-} \longrightarrow Pb^{2+}_{(l)}$	$+2e^{-} \rightarrow Pb_{(s)}$
	c)	Extraction of metals	
13.(a)	CO_2		
(b) 2N	aHCO ₃	$ Na_2CO_{3(s)} + CO_{2(g)} + H_2O_{(g)} $	
(c) mai	king gi	ass, soliening hard water	
14.(i) Y	Yellow	lead (II) oxide turned to red then grey.	
(ii) I. F	$\mathbf{H}_{2(g)} + \mathbf{P}$	$PbO_{(s)} \longrightarrow H_2O_{(1)} + Pb_{(s)}$	
	II.	$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(1)}$	
	(111) R	Reducing properties of hydrogen	
	Co	mbustion nature of hydrogen	
15.(a)	Physica	al change ½ mk	
	(b) Cl	hemical change	
	(c) ph	nysical change	
	· / I	emical change	
	(d) ch	lennear change	
	(d) ch 16.a)	Rusting	
	(d) ch 16.a) b)has	Rusting water of crytalization	
	(d) ch 16.a) b)has c) pai	Rusting water of crytalization inting,electroplating,anodizing,Gavaization	
	(d) ch 16.a) b)has c) pai	Rusting water of crytalization inting,electroplating,anodizing,Gavaization	
16.(i)	(d) ch 16.a) b)has c) pai	Rusting water of crytalization inting,electroplating,anodizing,Gavaization	
16.(i)	(d) ch 16.a) b)has c) pai U (ii)	Rusting water of crytalization inting,electroplating,anodizing,Gavaization Molecular	
16.(i)	(d) ch 16.a) b)has c) pai U (ii) (iii)	Rusting water of crytalization inting,electroplating,anodizing,Gavaization Molecular X is smaller than W	

b) C 1mark

ii) B	1 mark	
19a) A – fumes o	of colourless gas observed. Green	solid turns black
B - white pre b) CuCO ₃ (g)	$\longrightarrow CUO(s) + CO_2(g) \checkmark^1$	

21i) A: carbon reacts with excess air to form carbon(iv) oxide $\frac{1}{2}$ mark C(s) + O₂ (g) \longrightarrow CO₂(g) $\frac{1}{2}$ mark B: Carbon (iv) oxide is reduced to Carbon (ii) oxide by hot carbon $\frac{1}{2}$ mark C(s) + CO₂ (g) \longrightarrow 2CO(g) $\frac{1}{2}$ mark ii) Carbon (iv) oxide causes global warming 1mark

	Na ₂ SO ₄	H ₂ O	
Mass	1.42	1.81	1⁄2
RFM	142	18	
Moles	$\frac{1.42}{142}$	$\frac{1.8}{18}$ \checkmark	1⁄2
Divide by smallest No.	$\frac{0.01}{0.01}$	$\frac{0.1}{0.1}$	1⁄2
	1	10	

$$X = 10 \checkmark \frac{1}{2}$$

(2 mks) 23.(a) (i)

22.

(i)	$S_{16} = 2.8.6$		(1 mk)
	(ii)	$S_{12} = 2.8.2$	(1 mk)
(b)	(i)	Neutron – 14	(1 mk)
	(ii)	Electron - 10	(1 mk)

24.(i) At constant temperature the volume is inversely proportional to the pressure Formula

(ii)
$$\operatorname{P}_{1}\operatorname{V}_{1} = \operatorname{P}_{2}\operatorname{V}_{2} \checkmark \frac{1}{2}$$
 (1 mk)

$$12 X1 = 2.5 X V_2 \checkmark \frac{1}{2}$$

V₂ = $\frac{12 X1}{2.5} \checkmark \frac{1}{2} = 4.8$ litres $\checkmark \frac{1}{2}$ (2 mks)

25a) Sample I is a pure substance since pure substance have a sharp melting and boiling points.

(1mk)

Sample II is impure since the melting point is lower than that of a pure substance and its boiling point is higher than that of pure substance which is characteristic phenomena of an impure substance. (1mk)

b) Since ice causes skidding, common salt becomes an impurity to water (ice) causing it to melt at a lower temperature. .(1mk)

26a)

b) M has N and O (1)

27.a) X- fractionating column (1mk)

Y- Liebig condenser

b) to condense back the component of higher boiling point. (1mk)

c) shown on the diagram (1mk)

a) P