FORM THREE TERM ONE EXAM 2017

MARKING SCHEME BIOLOGY Paper 2

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: <u>www.schoolsnetkenya.com</u>

BIOLOGY PAPER 2 FORM 3 MARKING SCHEME

1.

Natural		Acquired				
Inherited/transmitted from offspring;	the parent to the	Developed disease/throu	after 1gh vacci	suffering nation	from	a

- b) Allergy-Drastic reaction of the body seen in a few individuals towards foreign substances that are normally harmless to the rest population/hypersensitive reaction of the body to the harmless substances;
- c) i) Platelets/Thrombocytes;
 - ii) Fibrin clot; reject clot alone
 - i) High temperature in the atmosphere causes temperature of the leaf to rise; thus increasing the vapour pressure in the intercellular air spaces this causes increase in transpiration rate;
 - ii) Low humidity in the atmosphere/dry air results to high vapour in the intercellular air space than the air surrounding the leaf; hence increase diffusion gradient hence higher transpiration rate
 - iii) Low atmospheric pressure causes an increase in evaporation from a wet surface/less opposing to evaporating molecules thus higher rate of transpiration;

(1mark)

2.(a) Osmosis;

d)

- (b) Solution Y is hypertonic/ high concentrations; water moved from cell to solution (2marks)
 - (Y);

Cell became flaccid/ shrinks;

(1 mark)

(c) (i)

- (ii) Cortex cells/ cortical cells absorbs water; expanding /curving away to the epidermis; epidermal cells are water proof; (3 marks)
- 3.)Approximate population = $\frac{No.of \ organismin \ first \ catch \times No.of \ organisms in second \ catch}{No.of \ marked \ organisms recaptured}$

i.e
$$P = \frac{FM \times SC}{MR}$$
; \checkmark
= $\frac{120 \times 90}{20}$; \checkmark 540 ants; \checkmark

(b) Does not consider migration of organisms into and out of study area.

- Does not consider the effect of paint used in marking on the animals behaviour

- Released animals may not mix freely with the remaining population.
- Marked organism may not have adequate time to mix with the rest.
- Does not consider the effect of weather on the organisms behaviour (any 4)
- (c) Quardrat method
 - Belt transect method
 - Line transect method X

 (a) - Vacuo Y - Tonop Z - Chloro (b) Cellulos (c) Active ti (d) The cell it to swell and 	le / Sap vacuole last; pplast; e ransport sap is hyperton d eventually bu	e nic to the solutio ırst;	on / distilled wat	er; hence water r	nolecules move into t (3marks)	(<i>3marks</i>) (<i>1mark</i>) (<i>1mark</i>) the cell; by osmosis; making
5. (a) Pneuma - Stomata	cophores / Aeria	al breathing root	s;			(2marks)
 (i) A B - Gill ba C - Gill fill (ii)Trap food / so (iii) Highly vascu Thin epitheli Numerous to Ability to spinor 	 Gill rakers; ar / arch; aments; lid particles hen llarised to transpute to reduce th increase surface read singly whe 	nce prevent then port away oxygene distance gases ce area for maxim en in water, furth	n from clogging en that has diffus s diffuse across; mum absorption her increasing th	the gill filaments sed in; of oxygen. e surface area.	;; (1marks) mark any 2; (2 mark	(3marks) s)
a) GLUCOSE LEVEL IN BLOOD Mg/100cm ³					аларана 120 140 о	

- Label axis 2mks
- Smooth curves labeled 2mks
- scale 1mk
- plots 1mk
- b)
- $\bullet \quad A-120\pm 1$
- B- 140 ± 1
- c) Person A is capable of regulating sugar while person B is likely to be diabetic
- d)
- In person A; insulin is released which stimulates the liver to convert excess glucose to glycogen in the liver.

TIME (MINUTES)

- In person B; insulin is not released; thus the decline is due to glucose being released in urine.
- e) ATP (Adonosine triphosphate)
- f)Body size
- Occupation
- Age
- Sex gender
- Environmental condition e.g temperature
- BMR

- State of the body viz ill; expectant mother;
- g) Liver
 - .7(a) Highly vascularised/network of blood capillaries;
 - Large surface area for gaseous exchange;
 - Thin membrane/ epithelium/ one cell thick wall/ thin lining;
 - Moist (lining);

(4mks)

- (b) <u>Breathing in:</u>
 - External intercoastal muscles contract; internal intercoastal muscles relax; lifting/raising the ribcage upwards and outwards; muscles of diaphragm contract; hence it flattens; the volume of the thoracic cavity/lungs increases; while the pressure decreases; higher air pressure in the atmosphere forces air into the lungs(through nose);

Breathing Out:

- External intercoastal muscles relax; while internal intercoastal muscles contract; moving the rib cage downwards and inwards; the muscles of diaphragm assumes dome shape; the volume of thoracic cavity decreases; while pressure increases; High pressure forcing air out of the lungs(through nose); (16mks) (20mks)
- 8. (a) Digestion is the enzymatic breakdown of food; into products that can be absorbed; (2mks)
 - (b) Bile contains bile salts (sodium taulocholate and sodium glycocholate); which emulsify fats thus increasing the surface area for the action of lipase;
 - Bile also contains sodium bicarbonate; which neutralizes acid from the stomach;
 - The sodium bicarbonate creates alkaline conditions necessary for the action of digestive enzymes in the duodenum and the small intestines; (5mks max4)
 - (c) In the mouth, the protein is chewed by the action of the teeth and mixed with the
 - saliva for easy swallowing; (No digestion of protein occurs in the mouth)
 - In the stomach, the gastric glands in the stomach wall secrete gastric juice;
 - Gastric juice contains hydrochloric acid; pepsinogen and rennin;
 - Hydrochloric acid activates pepsinogen into pepsin;
 - HCL creates the acidic conditions necessary for pepsin to digest protein into polypeptides;
 - Rennin hydrolyses the soluble milk protein/ Casein; into an insoluble curd; which is then digested by pepsin;
 - in the duodenum, the acidic PH created by the HCL is neutralized by the sodium bicarbonate; present in the pancreatic juice;
 - This creates alkaline conditions required by the trypsin; to digest proteins into polypeptides;
 - Trypsin is also secreted here in its inactive precursor trypsinogen;
 - Trypsinogen is converted into trypsin by the enzyme enterokinase;
 - In the small intestine / ileum alkaline conditions prevails;
 - The wall of ileum secretes intestinal juice; which contains peptides;
 - Peptides complete the digestion of protein breaking polypeptides into amino acids; (19mks max 14)