FORM FOUR CLUSTER KCSE MODEL 6 CHEMISTRY PAPER 1 ANSWERS

- 1.
- (a) It is one which does not form lather easily with soap. √(1mk)

(b)
$$Ca(HCO_3)_{(aq)} \xrightarrow{kaat} CaCO_{3(s)} + H_2O_{(l)} + CO_{2(s)}\sqrt{(1mk)}$$

 $\underline{OR} Mg(HCO_3)_{2_{(aq)}} \xrightarrow{kaat} MgCO_{3_{(s)}} + H_2O_{(l)} + CO_{2_{(s)}}(1mk)$
(c) It contains calcium necessary for strong hones and teeth $\sqrt{(1mk)}$

(c) -It contains calcium necessary for strong bones and teeth. √(1mk) OR –It does not react with lead pipes hence No lead poisoning. √

- 2.
- (a) The volume of a fixed mass of a gas is directly proportional to the absolute temperature if pressure is kept constant. √(1mk)

(b)
$$P_1 = P_2$$

 $V_1 = 22.4 dm^3$
 $T_1 = 273K$
 $\frac{P_1 = P_2}{T_1}$
 $P_1 = P_2$
 $hence \frac{V_1}{T_1} = \frac{V_2}{T_2} (\sqrt{\frac{1}{2}})$
 $\frac{22.4}{273} = \frac{V_2}{T_2} (\sqrt{\frac{1}{2}})$
 $\frac{22.4}{273} = \frac{V_2}{546} (\sqrt{\frac{1}{2}})$
 $\frac{22.4}{273} = \frac{V_2}{546} (\sqrt{\frac{1}{2}})$
(2)

3.

Effervescence occurs. V (1mk)

 $\begin{array}{l} AlCl_3 \mbox{ hydrolyses in water form an acidic solution } (H^+) \mbox{ that reacts with } Na_2CO_3 \mbox{ to form } CO_{(g)} \\ \sqrt{(1mk)} \\ Na_2CO_{3(g)} + H^+(aq) \rightarrow 2Na^+(aq) + H_2O_{(i)} + CO_{2_{(g)}} \ \sqrt{(1mk)} \end{array}$

(a) The rate of diffusion of a gases is inversely proportional to the square root of its density if pressure and temperature are kept constant.

b)
$$CH_4 = 12 + 4 = 16 \sqrt{\frac{1}{2}}$$

 $x = ?$
 $\frac{R_1}{R_2} = \sqrt{\frac{RMM_2}{RMM_1}}$
 $R_1 = \sqrt{\frac{RMM_2}{RMM_1}}$
 $R_2 = \sqrt{\frac{RMM_2}{RMM_1}}$
 $R_3 = \frac{1}{1314} = \frac{1}{\binom{7}{4}} = \frac{4}{7} (\sqrt{\frac{1}{2}})$
 $\frac{1}{\binom{7}{4}} = \sqrt{\frac{x}{16}} (\sqrt{\frac{1}{2}})$
 $\frac{7}{4} = \frac{\sqrt{x}}{4}$
 $\sqrt{x = 7}$
 $x = 79 \sqrt{\frac{1}{2}}$ (2 mks)

5.

6.

(i) Nonmetals. √(½) Their ionic radius is larger than atomic radius.¹/₂
 (ii) P. √¹/₂

Reactivity of nonmetals increase with decrease in atomic radius. $\sqrt{\frac{1}{2}}$

(b) Sodium. √¹/₂ Atomic radius decrease across the period √as the effective nuclear charge increases.¹/₂

- (a) Add water to each one of them in a test-tube separately √ and stir. To 2ml of each solution add acidified AgNO₃ √ if a white precipitate forms them it is NaCl √^{1/2} To 2ml of each solution add acidified BaCl₂ √^{1/2} solution or Ba(NO₃)₂. If a white precipitate is formed, then it is Na₂SO₄ √^{1/2}
- (b) Add 2 drops of Na_2SO_4 or Na_2CO_3 to each one of them. $\sqrt{\frac{1}{2}}$ If a white precipitate is formed then it is $Ca(OH)_2$, with NaOH a white ppt does NOT. $\sqrt{\frac{1}{2}}$

(a)
$$4Fe_{(z)} + 3O_{2(z)} \rightarrow 2Fe_2O_{3(z)}\sqrt{1}$$

(b) The green solution turns yellow √ or red brown. √1 H₂O₂ oxidizes the green Fe²⁺ ions to form the yellow Fe³⁺ ions. √1

9.

Add water to the mixture. $\sqrt[4]{2}$ Pour in a separating funnel. $\sqrt[4]{2}$ Drain the lower layer (Ethanol) in a beaker. $\sqrt[4]{2}$ Drain the upper layer (pentane) in a separate beaker. $\sqrt[4]{2}$

10.

The orange solution turns green. $\sqrt{1}$

 H_1S is a reducing agent. $\sqrt{1}$ reduces the orange $K_2Cr_2O_1$ into Cr^{3+} ions which are green. $\sqrt{1}$

11.

(a)
$$2NaOH_{(aq)} + H_2A_{(aq)} \rightarrow Na_2A_{(aq)} + H_2O_{(i)} \qquad \sqrt{25 \text{ cm}^3 \quad 18.7\text{cm}^3} \\ 1000\text{cm}^3 = 0.1 \text{ moles of NaOH. }\sqrt{1} \\ 25\text{cm}^3 = \frac{25 \times 0.1}{1000} = 0.0025 \text{ moles of } NaOH. \sqrt{1} \\ \text{(b)} \quad \text{Moles of } H_2\text{A} \text{ used} = \frac{1}{2} \text{ moles of } NaOH \\ = \frac{1}{2} \times 0.0025 = 0.00125 \text{ moles of } H_2A\sqrt{1} \\ 18.7 \text{ cm}^3 = 0.00125 \text{ moles of } H_2A^{\frac{1}{2}} \\ 1000\text{ cm}^3 = \frac{1000 \times 0.00125}{18.7} \sqrt{\frac{1}{2}} = 0.06684 \text{ moles hence } 0.06684 \sqrt{\frac{1}{2}} \text{ molar } H_2\text{A} \text{ molar$$

- (a) They destroy the ozone layer $\sqrt{\frac{1}{2}}$ causing global warming. $\sqrt{\frac{1}{2}}$
- (b) When subjected to high temperature it produces SO₂ that cause acid rain √1 which destroy
- buildings (roofs) and destroy plants. $\sqrt{1}$

13.

- (a) (i) Dinitrogentetraoxide. V1
- (ii) Oxygen. √1
- (b) Thermal decomposition. $\sqrt{1}$

CO let x be an e from c and • be an electron from O. (i)

15.

(a) Solubility is the mass in grams of a substance which dissolves in 100g of water at a particular temperature. $\sqrt{1}$

(b)
$$\frac{70}{2} - \frac{38}{2} = 35 - 19 = 16g\sqrt{1}$$

16.

. A deliquescent substance absorbs water vapour from the atmosphere and dissolves in it to form a solution. V 1

A hydroscopic substance absorbs water vapour from the atmosphere and becomes wet it does becomes wet it does not dissolve in it. $\sqrt{\frac{1}{2}}$ 1

17.

(i)	Q. 1
	Its mpt is less than 25° C but its Bpt is greater than 25°C. V1
(ii)	P has Giant covalent structure (or Giant atomic) 1/2
0.9256	R has Giant metallic structure. 1/2
(iii)	R $\sqrt{1}$ because it has high Mpt and Bpt and conducts electricity in solid state. $\sqrt{1}$

18.

(i)	It is denser than air. $\sqrt{1}$
	It does not support burning. $\sqrt{1}$
(ii)	Solid CO ₂ does not leave any residue behind $\sqrt{1}$
0.072	Normal ice leave water as a residue causing inconvenience. $\sqrt{1}$
19.	
(a)	-An acid is a proton (H^-) donor. $\sqrt{1}$
	-An acid is a substance which liberates H^+ ions (or H_3O^+ ions) as the only positively
	charged ions in aqueous solution.
11	A second state of the second state second as to be second as the second state of the s

A strong acid is one which ionizes completely in aqueous solution. V 1 concentrated acid is (b) one in which the acid units exceeds the water molecules. V1

Heat copper in air to form CuO. $\sqrt[4]{2}$ Add the excess CuO to dilute H₂SO₄ in a beaker and stir. $\sqrt[4]{2}$ Filter to remove the unreacted (excess) H₂SO₄ acid. $\sqrt[4]{2}$ Heat the filtrate to saturate it \sqrt{and} cover with a paper with holes leave it cool slowly to form crystals. $\sqrt[4]{2}$ Decant to get crystals and dry in the sun/between filter paper. $\sqrt[4]{2}$

21.

Ethanol is polar hence soluble in water. $\sqrt{1}$ Ethanol is an organic compound hence soluble in organic solvents e.g. acetone etc. $\sqrt{1}$

22.

(b)
$$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2(q)} \sqrt{1}$$

(c)
$$[Zn(NH_3)_4]^{2+}$$

23.

(a) The black copper (II) oxide turns brown (red brown). √1

(b)
$$3Fe_{(z)} + 4H_2O_{(g)} \rightarrow Fe_3O_{4_{(g)}} + 4H_{2_{(g)}}\sqrt{1}$$

(c) H₂ is explosive when it burns in air. $\sqrt{1}$ (to avoid an explosion)

24.

(a) Addition polymerization. √1

(b) H H
| |
C = C
| |
C_2H_5 H
(c)
$$(8 \times 12) + (8 \times 1)_{s} = 20,800 \sqrt{\frac{1}{2}}$$

 $(96+8)_{n} = 20800$
 $104n = 20800$
 $n = \frac{20,800}{104} = n = 200^{\frac{1}{2}}$

26.

 $\begin{array}{c|c} CaCO_{3_{\{s\}}} + 2HCl_{(ag)} \rightarrow CaCl_{2_{\{s\}}} + H_2O_{(s)} + CO_{2_{\{s\}}} \\ & 6.25g \\ CaCO_3 & 0.065 \text{ moles} \sqrt{1} \end{array} \begin{vmatrix} 50 \text{cm}^3 \\ 0.1 \text{ mole } \sqrt{1} \end{vmatrix}$ 40+12+45 100g Hence all the CalCO3 is used up while HCl is excess 1 mole of CaCo₃ = 24 litres of CO₂ (1 mole of CO₂) 0.0625 moles of CaCO₃ = $\frac{0.0625 \times 24}{1} \sqrt{\frac{1}{2}}$ $=1.5 dm^3 \sqrt{\frac{1}{2}}$

- (i) $\Delta H_1 = Molar heat of solution \sqrt{1}$ (a) (ii) $\Delta H_2 = Activation energy. \sqrt{1}$
- Endothermic reaction. V1 (b)