NYANDARUA WEST CLUSTER EXAMINATION

233/2

MARKING SCHEME

CHEMISTRY

PAPER 2

THEORY

July/AUGUST 2018

1. a) i.	Solid A Sulphur/ S _(s)
±. u,	

- ii. Gas D Sulphur (IV) oxide/ SO_{2(g)}
- iii. Solid Q Barium sulphate/ BaSO_{4(s)}
- iv. Solution M Copper (II) nitrate/ $CO(NO_3)_{2(aq)}$
- b) $2H_2O_{2(I)}$ <u>MnO_2</u> $2H_2O_{(I)}$ + $O2_{(g)}$

c)

- i Solid G $4K_{(s)} + O_2 \longrightarrow 2K_2O_{(s)}$
- ii Gas D S(s) + $O_{2(g)}$ Heat $SO_{2(g)}$
- iii $Cu(s) + H_2SO_{4(aq)} \longrightarrow CuSO_{4(aq)} + H2O_{(I)}$
- iv Relights a glowing splint
- v $Ba^{2+}_{(aq)}$ + $SO^{2-}_{(aq)}$ \longrightarrow $BaSO_{4(s)}$
- vi -Oxy- acetylene flame used in welding.

-Oxygen enriched air is used in hospitals by patients with breathing difficulties.

-When mixed with heliumit is used by mountain climbers and deep-sea divers.

-Remove iron impurities during steel making

- To burn fuelssuch as those used to for propelling rocket.

2. (a) (i) W and Z

Belong to the same chemical family.

- (ii) X₂O₇
- (i) X

Its ionic radius is larger than its atomic radius or has 1 electron in the outermost energy that can easily be lost.

- (iv) Atomic radius of Z is smaller than that of Y because Z has a greater nuclear charge(more protons) that tends to pull its outer electrons more strongly inwardly reducing the size of the atom.
- $2NaOH_{(aq)} + H_2SO_{4(aq)} \longrightarrow Na_2SO_{4(aq)} + H2O_{(l)}$ (b) (i) (ii) (I) No. of moles of acid used = (40×0.5) mole = $0.02 (\frac{1}{2}mk)$ 100 Mole ratio Base: Acid = 2:1No. of moles of base reacted = $[2 \times 0.02]$ = 0.04 mole. (½mk) 0.04 mol in 100 cm³ = 1000 x 0.04 (II) = 0.4 mol. ?-----1000cm³ 100
 - (III) Mass of NaOH in 1 litre of solution = (0.4x40)= 1.6g (¹/2mk) Mass of unreacted substance = $(17.6-1.6)_g$ (¹/2mk) = 16g (¹/2mk)
- 3.(a) (i) Sodium hydroxide/potassium hydroxide

$$NaOH_{(aq)} + CO_{2(g)}NaHCO_{3(aq)} \longrightarrow$$

(ii)Oxygen

- (ii) Argon, Neon
- (b) (i)From mole ratio NH_3 : NO : HNO_3

4 : 4 : 4 1 : 1 : 1

RFM of HNO₃=1+14+48=63

Moles of $NH_3 = \frac{3200}{24000} = 0.1333.....$

Moles of $HNO_3 = 0.1333....$

Mass of HNO₃= $0.1333 \times 63 = 9.3979. = 8.4$

ii) % of nitrogen in urea $=\frac{28}{60} \times 100 = 46.67$ %

% of nitrogen in NH₄NO₃ = $\frac{28}{80} \times 100 = 35\%$

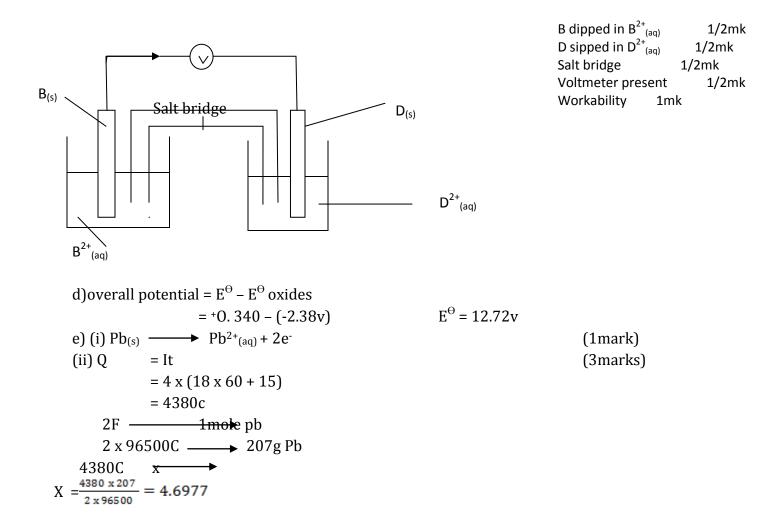
Urea is the best because it has higher % of nitrogen

(i) Magnesium oxide

-Magnesium nitride

(ii) $Mg_3N_{2(s)} + H_2O_{(1)} \rightarrow Mg(OH)_{2(aq)} + NH_{3(g)}$ Production of ammonia which is basic hence litmus paper turns blue

(iii) Nitrogen(IV)oxide


(iv) When used as anesthesia patients recovering from it laugh hysterically

4. a)C – has an E.M.F of 0.00_V and is used as the reference electrode

b)F⁻ - has the highest positive E^{Θ} value and is used as the reference electrode.

(2marks)

c) neat diagram

(2marks)

5(a) (i) S - Sodium propanoate

- T -Polypropene
 - H- propene/ prop-1-ene
- K -propylethanoate
 - (ii) As a dehydrating agent
- _ As a catalyst
 - (iii)

Step	Condition	reagents
Ι	warming	Ethanoic acid; conc H_2SO_4
II	Room temperature	Sodium metal

(iv) _Esterification

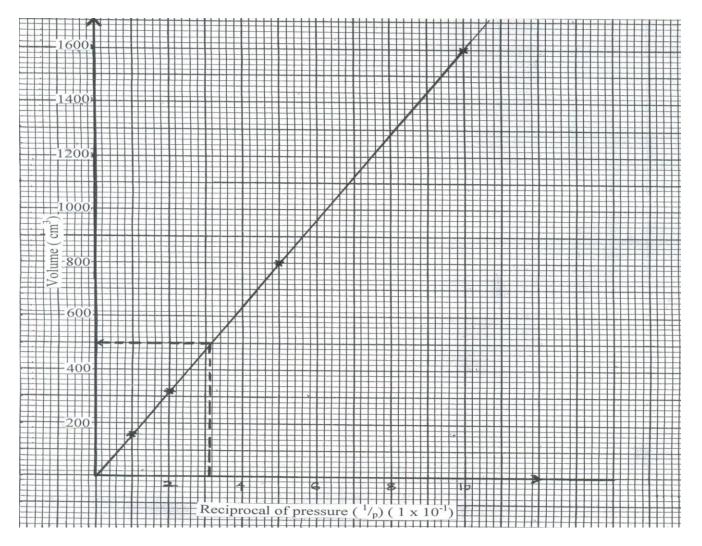
_Neutralisation

- (v) Making crates; carpet; plastic bottles; chairs; ropes (vi) $-CH_3CH_2COOH + NaOHCH_3CH_2COONa + H_2O$ $2CH_3CH_3 + 5O_2 - 2CO_2+6H_2O$
 - b)

2-methylbut-1,3-diene

6

(a)						
	Pressure (atmospheres)	10	8	5	2	1
	Volume (cm ³)	160	200	320	800	1600
	Reciprocal of pressure $(^{1}/_{p})$	0.10	0.23	0.20	0.50	1.00


(b) Graph Total 4 marks

Scale 1 mark

Plotting - If more than 4 values are plotted, award 2 marks (max)
-If 3 values are plotted, award 1 mark
- If less than 3 values are plotted, award 0 mark

Line graph from the origin 1 mark

Volume against reciprocal of pressure

- (d) Correct value from the graph = 1 mark 500 ± 10cm³
 Plotted line on the graph = 1 mark
 (e) Volume and the reciprocal of pressure are directly proportional
 - y volume and the recipiocal of pressure are uncerty proportion
 - (e) R.M.M (Mr) of CO = 12 + 16 = 28R.M.M (Mr) of CO₂ = 12 + 32 = 44

$$\frac{\text{RCO}}{\text{RCO}_2} = \frac{\sqrt{\text{MrCO}_2}}{\text{MrCO}\sqrt{\frac{1}{2}}}$$
$$\frac{\text{RCO}}{\text{RCO}_2} = \sqrt{\frac{44}{28}} \sqrt{\frac{1}{2}}$$
$$\frac{\text{RCO}}{\text{RCO}_2} = 1.254 \sqrt{\frac{1}{2}}$$

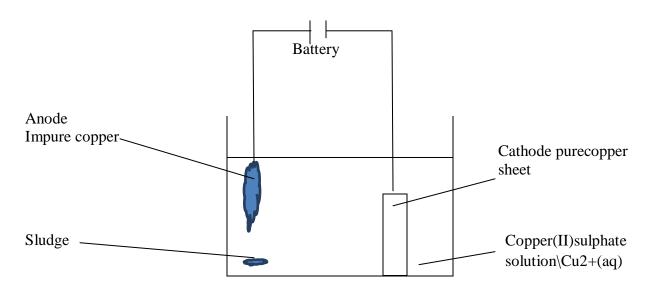
CO diffuses 1.254 times faster than CO₂

7.(a) Crush the one powder and react with $HNO_3(aq)$ free the ions; filter to obtain a filtrate, the filtrate in a test tube, add drops of HCI/NaCI/KI; A white precipitate /yellow precipitate formed confirms present

(b) i) gas K is Sulphur (IV) oxide

ii) $2CuFeS_{2(s)} + 4O_{2(g)}Cu_2S_{(s)} + SO_{2(g)} + 2FeO_{(s)}$

Fe²⁺


 CO_2/CO

(1 mark)

Reducton//Redox

Cu²⁺reduced to Cu if coke oxidesed to Co/Co2

C)

d) Rfm for CuFeS₂=63.5+56+64=183.5

CuFeS2 \longrightarrow Cu 183.5 \longrightarrow 63.5 810Kg \longrightarrow $\frac{810 \times 63.5}{183.5} = 280.3$ Kg %Purity $=\frac{210 \times 100}{280.3} = 74.92\%$