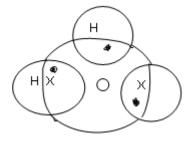
2018 CHEMISTRY PAPER 1 MID YEAR EXAMINATION MARKING SCHEME


- -Hold a magnet on top of the mixture to attract iron filling. $\sqrt{1}$ -Add water to the mixture, stir and filter to obtain PbCl₂ as a residue and NaCl solution as the filtrate. $\sqrt{1}$ -Heat the filtrate to evaporate water leaving behind NaCl crystals $\sqrt{1}$
- 2. a) Existence of a substance in two or more forms without a change of state (1 mk)
 - b) (i) Graphite(1/2 mk)
 - (ii) Conducts electricity, (1/2mk) contains delocalised electrons. (1/2mk) OR soft and

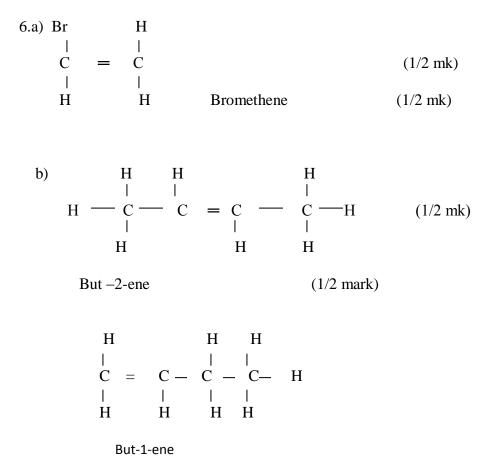
slippery (1 mk) Hexagonal layer are held together by weak van der waals

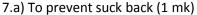
forces (1/2 mk)

3 (a)

1

b) Dative/coordinate bond (1 mk)


4
$$\frac{RO2}{RSO2} = \sqrt{MSO2/MO2}$$
 $\frac{1.2}{80/t} = \sqrt{64/32}\sqrt{1}$
RO2=60/50 $\frac{1.2t}{80} = 2$
=1.2 1.2t=160
RSO2=⁸⁰/t t= **133.33 sec** $\sqrt{1}$


5.(a) Enthalpy change when one mole of the compound is formed from its constituents elements in their standard states (stp)

(b)
$$C_{(s)} + O_2 -394.8$$
 $CO_{2(g)}$
 DH_3 -285.6
 $CO_{(g)} + \frac{1}{2}O_{2(g)}$ (1 mk)

 $DH_3 \ + \ -285.6 = -394.8$

 $DH_3 = -394.8 + 285.6 = -109.2 kj1mol$ (1 marks)

b) Changes from red to blue (1/2 mk) because ammonia dissolves in water to form

Ammonium hydroxide which is alkaline (1/2 mks)

- (b) $60-55 = 5g\sqrt{1}$
- (c) Fractional crystallization $\sqrt{1}$
- 9. Add distilled water to ZnCl_2 solid $\sqrt{1/2}$ and shake until all solid dissolves $\sqrt{1/2}$
 - Add Na₂CO₃ $\sqrt{1/2}$ solution to form white $\sqrt{1/2}$ precipitate of ZnCO_{3(s)}
 - Filter $\sqrt{1/_2}$ and wash the residue with a lot of water $\sqrt{\,\%}$
- 10(a) Calcium oxide reacts with chlorine to form calcium hypochlorite to for calcium hypochlorite $\sqrt{1}$
 - (b) Anhydrous Cacl₂ / conc. $H_2SO_4\sqrt{1}$ rej. names
- 11(i) Vanadium (v) oxide/platinum $\sqrt{1}$

(iii) I yield decreases $\sqrt{1/2}$ extra heat decomposes SO₃ /forward reaction is exothermic/equilibrium shifts to the left. $\sqrt{1/2}$

II Yields increases $\sqrt{1/2}$ since extra oxygen is used $\sqrt{1/2}$

12 (a) $H^+_{(aq)} + OH^-_{(aq)} \longrightarrow H_2O_{(I)}\sqrt{1}$

(b) $Y_2\sqrt{1/2}$ - complete neutralization /end point $\sqrt{1/2}$

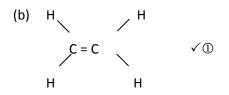
II Y_1 and Y_2 –Neutralization is taking place producing heat. $\sqrt{1}$

III Y_2 and Y_3 reaction has come to completion and products are cooling/cooling releases heat to the surrounding. $\sqrt{1}$

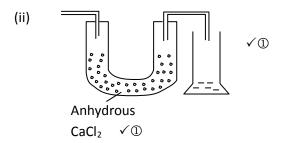
13

 A black solid is formed; √1/2 Heat is given out 	Chemical√1/2
Purple vapour condenses on cooler parts of test tube into shiny grey crystals $\sqrt{1/2}$	Physical√1/2
Solid decomposes to form gas and black solid/blue- green due loss of water $\sqrt{1/2}$	Chemical√1/2

14 (a) A base that dissolves in water to give hydroxide ions. $\sqrt{1}$


(b) (i) Very soluble in water, thus it would dissolve in water instead of being collect. $\sqrt{1}$

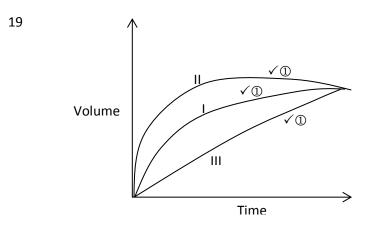
(ii) Less dense than air $\sqrt{1}$

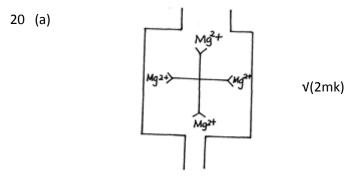

15 (a) $0.702g \rightarrow 560 \text{ cm}^3$

 $(Rmm)\chi g \rightarrow 22400 cm^3 \checkmark ①$

Rmm = 28.08 √①

16 (i) Iron (II) Sulphide $\sqrt{1}$




17(i) Effervescence $\sqrt{\frac{1}{2}}$ since HCl gas dissociates in water forming hydrogen ionsthat reacts with CO₃²⁻ forming CO₂.

(ii)No efferve scence $\checkmark \frac{1}{2}$. HCl gas dissolves in methylbenzene without dissociating hence no H⁺ to react with $\sqrt{2}$

18(i) Solvent extraction. \checkmark ①

(ii) Chromatography. \checkmark ①

- (b) (ii) By adding concentrated brime from the top. v(1mk)
- 21 (a) Heating curves V1

(b) Solid NV1; does not sharp meting point. V1

- 22 (a) $Y NO_3^- \sqrt{1}$ V- $O^2^- \sqrt{1}$ (b) Nitrogen (IV) oxide $\sqrt{1}$
- 23. (a) F, G, E (1mk)
 - (b) Mercury //Hg; (½mk), Silver (½mk); Ag

24. (i) A white ring/solid $\sqrt{1}$ was formed inside the combustion tube closer to the cotton wool soaked in

concentrated Hydrochloric acid. V 1/2 Ammonia is lighter and diffuse faster. V 1/2

(ii) $NH_{3(g)} + HCl(_g) \longrightarrow NH_4Cl_{(s)} \vee 1$

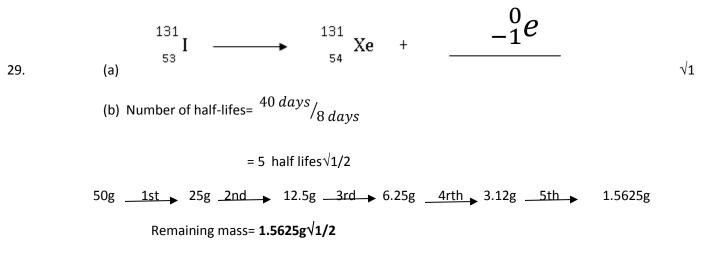
25. Acid - NH₄⁺ √ 1

Base – H_2O V 1

26. (a) $B\sqrt{1/2}$ because same amount little soap is used before and after boiling. $\sqrt{1/2}$

(b) Sample C contains temporary water hardness $\sqrt{1/2}$ which was removed boiling hence little soap was used after boiling. $\sqrt{1/2}$

27. a) - Bauxitev1/2mk


- A1₂O₃. 2H₂O √1/2mk

b) Anode: 2O_{2(I)} → O_{2(g)} + 4e-. √1

Cathode: $AI_{(1)}^{3+} + 3e^{-}AI_{(1)}\sqrt{1}$

28. (a) C $\sqrt{1}$ /2- The element has a filled outermost energy level $\sqrt{1/2}$

(b) The atomic radius of element A is greater than that of element $B\sqrt{1}$. B has more protons than A hence highier nuclear charge which results to areduction in atomic raduis. $\sqrt{1}$

