NAME...... DATE

INDEX NO. SIGNATURE..... 233/3 CHEMISTRY PRACTICAL PAPER 3 JULY/AUGUST, 2018 TIME: 2¼ HOURS.

LANY JOINT EVALUATION TEST Kenya Certificate of Secondary Education. 233/3 CHEMISTRY PAPER 3 PRACTICAL TIME: 2¼ HOURS.

INSTRUCTIONS TO CANDIDATES.

- Write your name and index number in the spaces provided above.
- Sign and write the date of exam in the spaces above.
- Answer ALL the questions in the spaces provided.
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2¹/₄ hours allowed time for the paper.Use the 15 minutes to read through the question paper and make sure that you have all the chemicals and apparatus that you may require.
- Mathematical tables and electronic calculators may be used.
- All working **MUST** be clearly shown where necessary.
- This paper consists of 9 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

FOR EXAMINER'S USE ONLY.

Question	Maximum score	Candidate's score
1	23	
2	10	
3	07	
Total score	40	

© 2018 LANY Joint Evaluation Test 233/3 Chemistry Practical

- 1. You are provided with:-
 - Solid T, hydrated ethanedioc acid $H_2C_2O_4.nH_2O$.
 - Solution Q, a 0.2M solution of sodium hydroxide.

You are required to determine:

- (i) Solubility of solid T.
- (ii) The value of n is the formula $H_2C_2O_4.nH_2O_1$.

Procedure I

- (i) Fill the burette with distilled water.
- (ii) Place solid T in the boiling tube.
- (iii) Transfer 4cm³ of distilled water from the burette into the boiling tube containing solid T. Heat the mixture while stirring with the thermometer to a temperature at which crystals start to form in the table 1 below.
- (iv) Add a further 2cm³ of distilled water from the burette to the mixture. Repeat the procedure (iv) above and record the crystallization temperature. Complete the table I below by adding the volumes of distilled water as indicated.

(Preserve the contents of the boiling tube for procedure II)

TABLE I

Volume of distilled water in boiling tube	Crystallization temperature	Solubility of solid T in 100g / water
4		
6		
8		
12		

(6mks)

(a) On the grid provided, plot a graph of solubility of solid T (y-axis) against crystallization

temperature.

(3mks)

(i) Solubility of T at 55°C

(1mk)

(ii) The temperature at which 80g of T dissolve in 100g of water. (2mks)

Procedure II

- Transfer the contents of the boiling tube in procedure I to a clean 200ml volumetric flask. ٠ Add distilled water to the mark. Label the resulting solution T.
- Fill the burette with solution T. Pipette 25cm³ of Q into a clean 200ml conical flask. Add 3 • drops of phenolphthalein indicator.
- Titrate T against Q to an accurate end point. Record your results in the table II below. •
- Repeat the experiment two more times and complete the table II below. •

Table II

	Ι	II	III
Final burette reading cm ³			
Initial burette reading cm ³			
Volume of T used cm ³			

	(4mks)
Calculate:	
(a) Average volume of T used.	(1mk)
(b) (i) Moles of Q used.	(1mk)
(ii) Moles of T used.	(1mk)

(iii) Concentration of T in moles per dm³.

(c) Determine the value of n in the formula $H_2C_2O_4.nH_2O_5$ (2mks)

- 2. You are provided with solid E. Carry out the following tests on E and record your observations and inferences in the spaces provided. Identify any gas (es) evolved.
 - (a) (i)Place a spatula of solid E into a boiling tube and add 10cm³ of distilled water. Shake the mixture thoroughly. Filter the mixture and divide the filtrate into four portions. Keep the residue for use in part (b).

Observation	Inferences	
$(1/_2 mk)$	$(^{1}/_{2}mk)$	

(ii) To portion one, add Sodium Hydroxide solution dropwise until in excess.

Observation	Inferences	
(1mk)	(¹ / ₂ mk)	

(iii) To portion 2, add Ammonia solution dropwise until in excess.

Observation	Inferences
(1mk)	$(^{1}/_{2}mk)$

(iv) To portion three, add four drops of Lead (II) Nitrate solution.

Observation	Inferences
$(1/_2mk)$	(1mk)

(v) To portion four, add four drops of acidified Barium Nitrate solution.

Observation	Inferences
$(^{1}/_{2}mk)$	$(1/_2mk)$

(b) (i) Place the residue in a boiling tube and add dilute Nitric (V) acid little by little until all the solid dissolves. Divide the solution into two parts.

Observation	Inferences
$(1/_{2}mk)$	$(^{1}/_{2}mk)$

(ii) To part one, add Sodium Hydroxide solution dropwise until in excess.

Observation	Inferences
(1mk)	$(1/_2 mk)$

(iii) To part two, add Ammonia solution dropwise until in excess.

Observation	Inferences
(1mk)	(¹ / ₂ mk)

3. You are provided with substance K. Carry out the tests below and record your observations

Inferences in the table below.

(a) Scoop a little of solid K with a clean metallic spatula and place it at the hottest part of a non-luminous flame.

Observation	Inferences
$(1/_2 mk)$	$(^{1}/_{2}mk)$

- (b) Add about 5cm³ of distilled water to the remaining solid K in a boiling tube. Divide the resulting mixture into 4 portions.
 - (i) To the first portion add 3 drops of acidified K_2CrO_7 .

Observation	Inferences
(1mk)	$(^{1}/_{2}mk)$

(ii) To the second portion add 3 drops of Bromine water and warm.

Observation	Inferences
(1mk)	$(^{1}/_{2}mk)$

(iii) To the 3^{rd} portion add 2 – 3 drops of universal indicator and determine the PH of the Page 8 | 9

and

solution.

Observation	Inferences
$(1/_2 mk)$	$(^{1}/_{2}mk)$

(iv) To the 4th portion add Sodium hydrogen Carbonate.

Observation	Inferences
(1mk)	$(^{1}/_{2}mk)$