SECTION A

1.	One which if a current is passed through it, voltage across its ends is not prop	ortional to the
2	Recliner property /light travels in a straight line:	(1mk)
2. 3	cooking.	(TIIK)
	Communication;	(2mks)
4.	Angle of inclination to the field;	
	- Length of conductor;	(2mks)
5.		
	N 5 DIR	NTRATION ; ECTION ;
6.	(a) Minimizing energy lost due to collisions:	(1mk)
	(b) Hard Soft	()
	1. Highly penetrative /EnergyLow penetrative /Energy2. Short wavelengthLong wavelength3. High frequencyLow frequency4. Produced at high voltageproduced at low voltage	
	Any one x	x 3 = (3 mks)
	$\frac{V^2}{V^2} \qquad \frac{V^2}{V^2} \qquad \frac{250x250}{V^2}$	
7.	$P = R$; $R = P = R = 3000 = 20.83 \Omega$;	
8.	138 - 90 = 48 ⁰ = C $n = \frac{I}{SinC};$	
	$n = \frac{1}{Sin48}$	
	n = 1.346	(3mks)
	C	(Jinks)
9	$F = h \frac{1}{\lambda}$	
	hc 6.663r10 ⁻³⁴ r3.0r10 ⁸	
	$\gamma = \frac{\pi c}{E}$, $-\frac{0.005 \pi 10^{-19}}{3.37 r 10^{-19}}$.	
	$\chi = L$, = 5.57×10 , = 5.902 x 10 ⁷ m.	(3mks)
10	Controlling the intensity of the heam/ Brightness (1)	(3111KS)
10.	A. Manganese IV Oxide mixed with carbon.	iiik)
	B: Ammonium chloride solution:	(2mks)
12.	Charges concentrated by point action;	
	Similar charges from ionized gas repel while unlike charges attract;	(2mks)
13.	Dry cells uses solid electrolyte while wet cells uses solution of an electrolyte;	(1mk)
SEC	<u>ГІОN В:</u>	
14.	(a) i) To be easily ionized by the radiations.	(1mk)
	(11) The radiation are transparent to the window; They collide with argon	
	gas causing ionization; <u>more electrons</u> are produced	
	(Avalanche/electrons). A pulse of current; is produced which is	

passed through the counter as clicks;

(4mks)

(iii) Quenching agent /absorbing kinetic energy of the positive ions; (1mk) (iv) Use of amplifier; (1mk)

(v)

a = 226;b = 88,

(b) In metals rise in temperature causes an increase in resistance while in semi conductors increase in temperature causes a decrease in resistance.;;

(ii)

- 15. (a) Forms a magnified image
 - (b) focus the image of the distant object on a screen until a sharp image is formed; Measure the distance between the mirror and the screen d; Repeat two or three times, find the average d which is the focal length.;(3mks)

(c)

(d)
$$U + V = 120$$

 $u + 5u = 120$
 $6u = 120$
 $u = 20;$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{f} = \frac{1}{20} + \frac{1}{100};$$

$$\frac{1}{f} = \frac{5+1}{100} = \frac{6}{100}$$

$$f = \frac{100}{6} = 16.67 \text{cm};$$
(3mks)

16. Method of minimising (a) Causes Eddy currents Laminations Hysterises loss/Magnetic reversals Use of soft iron Heating effect. (T^2R) Use of thick copper wires Magnetic flux leakage Winding secondary on primary/ use of soft iron core. Any one, with correct method (2mks)

(b)
$$E = \frac{Vs \ x \ Is}{Vp \ x \ Ip} \underset{x \ 100\%;}{x \ 100\%;} E = \frac{Power \ output}{power \ input} \underset{x \ 100\%}{x \ 100\%}$$

$$80 = \frac{50 \times 5 \times 100}{Power input} =$$

$$\frac{50 \times 5 \times 100}{80}$$
Power input = $\frac{50 \times 5 \times 100}{80}$; = 312.5w
$$= 312.5w;$$
(3mks)
(i) 240 x Ip = 312.5w
$$\frac{312.5}{IP = 240};$$

$$= 1.302 \text{ A};$$
(2mks)
(c) (i) Changing magnetic flux linking with the coil causes an induced current in the coil.
(2mks)
(ii) Increasing the speed of rotating of wheel;
(1mk)
(a) Sound waves Electromagnetic waves

Transverse

(2mks)

17.

Require material medium
Have compressions and
rare factions
Particles moves parallel to wave
Motion
(b) (i)
$$2\frac{1}{2}$$
 Waves = 0.002 sec
 $\frac{0.002}{1}$ wave = $\frac{5}{5}$ x 2;

Longitudinal

1 wave = 5 x 2;
= 0.0008 sec; (2mks)
(ii)
$$V = \lambda f$$
;

$$V = \frac{\lambda}{T}$$

$$2m \ge 0.0008 = \lambda;$$

$$\lambda = 0.0016m$$

$$\lambda = 1.6 \ge 10^{-3}m;$$
(c)

$$d_1 = 1.5m$$

(1mk)

17. Photoelectric effect – The process of ejecting electrons from a metal surface when radiations of enough /sufficient energy falls on the metal surface.; (1mk)
(b) Energy of the radiation /frequency /wave length(any one); (1mk)

					Any one;		
$V_{s}(V)$	1.35	1.15	0.93	0.62	0.36		
λ x 10 ⁻⁷ m	3.77	4.04	4.36	4.92	5.46		
$f_{\rm (Hz) \ x \ 10^{14}}$	7.96	7.43	6.88	6.10	5.49		
4 correct values all correct							

4 correct values all correct (II) (i) Threshold frequency = $4.5 \times 10^{14} \text{ Hz}$

(ii)
$$eVs = hf - hfo$$

 $V_S = \frac{h}{e} \frac{hfo}{f} - \frac{hfo}{e}$
Gradient $= \frac{h}{e}$
(ii) Gradient $\frac{\Delta Vs}{\Delta f} = \frac{1.35 - 0}{(8.0 - 4.5)x10^{14}}; = \frac{1.35}{3.5} \times 10^{-14}$

$$= 3.85 \times 10^{-15}$$

$$\therefore h = 3.85 \times 10^{-15} \times 1.6 \times 10^{-19};$$

$$= 6.16 \times 10^{-34} \text{ Js};$$

.

ì

1+2

+-

Frequency x10¹⁴(HZ)