LANY JOINT EXAMINATION 2018 CHEMISTRY PAPER 2 MARKING SCHEME

- 1.a) i) Alkali metals ✓ 1
 - ii) Minimum energy required to remove an electron from the outermost energy level of an atom \checkmark 1 in the gaseous state.
 - iii) P has the smallest \checkmark 1 atomic radius. Therefore the outermost electron is strongly attracted \checkmark 1 to the nucleus hence more energy is required to remove it.
 - iv) It melts because heat is produced √1 during the reaction or reaction is exothermic.

- The hissing sound is due to the large production of hydrogen gas \checkmark 1 produced in a stream.

- Moves on the surface of the water due to being propelled $\checkmark 1$ by the escaping hydrogen gas.

- Floats on surface of the water because it is less denser than water.

v) 2Q _(s) +	$2H_2O_{(1)}$	2QOH _(aq)	+	H2 _(g) ✓1
Accept 2Na(s) +	2H2O(1)	2NaOH(aq)	+	H2(g)

- b) A strong base is fully ionised $\checkmark \frac{1}{2}$ in water to produce many hydroxide ions eg KOH, NaOH or Na₂O $\checkmark \frac{1}{2}$, K₂O while weak base is partially ionised $\checkmark \frac{1}{2}$ in water to produce few hydroxide ions eg NH₃(aq) $\checkmark \frac{1}{2} / CaO/Ca(OH)_2/Mg(OH)_2/MgO$
 - i) Reaction between a base ✓ 1 and an acid to form salt and water only or reaction between 1 mole of H+ ions and 1 mole of OH- to form 1 mole of water.
 - ii) Add 200cm $3\checkmark$ $\frac{1}{2}$ of 2M HNO3 to 200cm3 of 2M Na OH
 - Heat / evaporate the mixture until saturation
 - Allow the mixture to cool for crystals to form slowly
 - Obtain the crystals.
 - iii) 2NaNO3(s) 2NaNO2(s) + O2(g)

2. a)	- Cost	t			- He	avy value	
	- Ava	ilability	r		- Ea	se of storage	
	- Effe	ect on er	nvironn	nent	- Ea	se of transportation	on
b)	i)	DT	=	46.5 - 2.5	=	21.5	
		DH	=	450 x 4.2 x 2	21.5		
			=	40635J or 4	0.635K	J	
	ii)	Mass	of etha	anol = 125.5 - 1	124 = 1	.5g√ ½	
		RMM	l of eth	anol = $46g \checkmark \frac{1}{2}$	2		

1.5g of ethanol produces 40635
46g of ethanol produce 40635 x 46
1.5

$$= 1246140 \text{ j/mol}$$

 $= -1246.14 \text{ kj/mol}$
c) C2HsOH(1) + 3O2(g) 2CO2(g) + 3H2O(1)
d) - Heat lost to surrounding air or apparatus
- Error in reading temperature or mass.
- Incomplete combustion of ethanol
- A little of the ethanol evaporates as the burner cools.
 $C_2\text{HsOH}_{(1)} + 3O_{2(g)}$ (Heat change)

Energy $\checkmark \frac{1}{2}$ $\Delta Hc \checkmark \frac{1}{2} = -1246.14 \text{ ks/mol}$

(ks) $2CO_{2(g)+}3H_2O_{(1)}\checkmark \frac{1}{2}$

Reaction path
$$\checkmark \frac{1}{2}$$

3) (a) carbon $\rightarrow 12 \times 1.37 = 0.37$

44

Hydrogen = $2 \times 1.12 = 0.12$

(b) Oxygen

Н	0	
<u>0.12</u>	<u>0.51</u>	
1	16	
<u>0.12</u>	<u>0.03</u>	
0.03	0.03	
4	1	
	$ \begin{array}{c} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

(d) Is the existence of an organic compound with a movable functional group

$$\mathbf{C} = \mathbf{C} - \mathbf{C} - \mathbf{C} - \mathbf{H}$$

$$\mathbf{H} = \mathbf{H}$$

$$\mathbf{H} - \mathbf{C} - \mathbf{C} \subset \mathbf{O}$$

$$\begin{array}{cccc}
\mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\
\mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\
\mathbf{H} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{H} \\
\mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\
\end{array}$$
(ii)
$$\begin{array}{c}
\mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\
\mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\
\end{array}$$

(f) **I** (i) H₂

- (ii) Ni, high temp
- II Manf. of margarine

4). (a) (i) Dissolve carbon (IV) oxide in NaOH or KOH solution. $\checkmark 1$

 (ii) Air is cooled to -200^oC and compressed ✓1 under high pressure to change it into liquid. The liquid air is then warmed ✓1 and nitrogen having the lowest melting point distils out first at

-196°C.

(b) (i) $M = Hydrogen gas \checkmark 1$

- (ii) To oxidize all ammonia to nitrogen (II) oxide $\checkmark 1$
- (iii) $NH_{3(g)} + HNO_{3(aq)}$ $VH_4NO_{3(aq)} \checkmark 1$

(iv) (I) Since the reaction is exothermic, increasing the temperature to 600° CV1 lowers the yield of

Ammonia gas; High temperature decompose Ammonia $\checkmark 1$ to Nitrogen and hydrogen

(II) – Manufacture of fertilizers ✓1

- Manufacture of Nitric Acid √1

Conditions if more than 2 and one is wrong penalise (1mk)

(c) $S_{(s)} + 4HNO_{3(aq)}$ $SO_{2(g)} + 4NO_2 + 2H_2O_{(l)}$

- Brown fumes evolved ✓1. Concentrated Nitric (V) Acid oxidizes Sulphur to Sulphur (IV) Oxide

and itself reduced to Nitrogen (IV) Oxide. ✓1

5) (a) (i)
$$Y \sqrt{\frac{1}{2}}$$

(ii) Has the highest reduction potential/is the weakest reducing gent $\sqrt{\frac{1}{2}}$

(b) (i)
$$X_{(aq)}^{2+} + 2e^{-} \rightarrow X_{(s) \sqrt{1}}$$

 $G_{(s)} \rightarrow G^{2+} + 2e^{-} \sqrt{1}$

(ii) Complete the circuit.Maintain the balance of charge in the two half cells.

(c) (i)
$$Cu^{2+}, H^+, OH^-, SO_4^{2-} \sqrt{2}$$

- (ii) Electrode C $\sqrt{1/2}$
- (iii) Intensity of blue colour decrease \checkmark^1 , As Cu²⁺ are oxidised to copper metal \checkmark^1

(2mks)

6

ii) II from the graph $99\pm 1\sqrt{1}$ (1mk) 16.5 secs ± 0.5 iii) All hydroxide peroxide has been decomposed /reaction has stopped. $\sqrt{1mk}$ iv) on the graph /oxide (2makes) v) The solid acted as a catalyst (1mk)

7) (a) (i) Graphite is inert and does not react with the chlorine gas produced. (2mks)

(ii) By using a diaphragm of iron gauze screen.

(1mk)

(iii) $2Cl^{(g)} \rightarrow Cl_{2(g)} + 2e$ -(1mk)

(b) Calcium chloride (1mk)

(ii) To reduce the cost of production by lowering electricity cost.(2mks)

 (c) Hydrogen gas would be discharged at cathode instead of sodium because it has a greater tendency to gain etc. (2mks)

(d) Na₂O, Na₂O₂

- Sodium vapour is used in light bulbs to produce yellow glow.

- A mixture of sodium and potassium is used as a coolant in nuclear reaction. (2mks)