233/3 CHEMISTRY (2018) **KCSE** Trial Exam **MARKING SCHEME**

1^{st}	2 nd	3 rd	CT 1mk
24.6	34.7	24.7	DP 1 mk
0.0	10.0	0.0	AC 1 mk PA 1 mk
24.6	24.7	24.7	FA 1 mk
	1 24.6 0.0	1 2 24.6 34.7 0.0 10.0	1 2 5 24.6 34.7 24.7 0.0 10.0 0.0

Total 5 mks

TITRATION TABLE: 5 MKS.

Marks distributed as follows:

(a) Complete table (CT) 1 mk

Conditions:

- (i) Complete table with 3 titrations. 1 mk.
- Incomplete table with 2 titration's. $\frac{1}{2}$ mk (ii)
- Incomplete table with 1 titration. 0 mk (iii)

Penalties:

- Wrong arithmetic / subtraction. (i)
- Inverted table. (ii)
- Unrealistic values from the burette e.g below 1.0ml or above 50ml. (iii) Penalize $\frac{1}{2}$ mk each to a maximum of $\frac{1}{2}$ mk.

Conditions

- 1 d.p used consistently. (i)
- (ii) If two d.p used, the d.p must be 0 or 5. Penalize fully if any of the conditions is NOT met.
- (b) Accuracy (AC) 1mk

Compare the candidate's readings with the school value/centre value (S.V/C.V)

NB If there is wrong arithmetic in the table, compare the school value with the correct titre and award accordingly. (1mk)

(d) Principles of Averaging PA

-Values averaged must be consistent within +0.2 cm³ of each other.

Conditions

- (i) If three or two consistent values are averaged 1 mk
- (ii) If only two titrations are done and are inconsistent and are average 0mk

Penalties

- Wrong arithmetic's i.e error beyond +0.2 units in the 2nd D.P eg 19.67 given as 19.64, penalize (i) $\frac{1}{2}$ mk.
- If no working shown, but the answer given is correct, penalize 1/2 mk. (ii)
- (iii) If no working shown, and the answer given is wrong, penalize fully.
- (iv)
- If the value is rounded off to the 1st D.P, penalize $\frac{1}{2}$ mk e.g 22.66 rounded off to 22.7. Allow rounding off to the 2nd D.P,e.g 36.125 to 36.13 or 19.666 to 19.67 (v) NB: Where the candidate's values divide exactly to one D.P, accept it and award fully. $e.g 21.9 + 23.0 + 23.1 = 23 \text{ cm}^3$ 3
- (c) Final Answer (FA) 1 mk

Compared to the school value and tied to the average candidates average titre.

Conditions

- If within +0.1 cm³ of the S.V / C.V 1 mk. (i)
- If not within +0.1 cm³ but is within +0.2 cm³ of the S.V / C.V $\frac{1}{2}$ mk. (ii)

(iii) If beyond +0.2cm³ of S.V,0 mk.
NB: If wrong values were averaged, pick the correct ones and award accordingly e.g. If the S.V/C.V given is 19.65, and the candidates titre values are 19.6, 19.3, 19.4 Pick values to give the candidate MAXIMUM credit.

Hence pick $\frac{19.6 + 19.4}{2} = 19.5$ BUT NOT $\frac{19.3 + 19.4}{2} = 19.35$ - Incase there was wrong subtraction in the table use the correct values. (Do the subtraction)

Q (ii) Moles per litre of B = Mass in g per litre RMM 1⁄2 mk 1⁄2 mk 6.3 = 0.05 M1 mk 126 Q (iii) $2NaOH_{(aq)} + H_2C_2O_{4(aq)}$ $Na_2 C_2 O_{4(aq)} + 2H_2 O$ $\frac{1}{2}$ mk Mole ratio of NaOH (aq) $H_2C_2O_2$ (aq) is 2:1 Respectively : No. of moles of $H_2C_2O_4$ (aq) used =<u>24.67</u> X 0.05 + 1.2335X10⁻³ moles $\frac{1}{2}$ mk 1000 Hence No. of moles of NaOH_(aq) used = $1.225 \times 10^{-3} \times 2$ = 2.467 X 10⁻³ moles 1⁄2 mk $25 \text{cm}^3 \text{ of NaOH}_{(aq)} \longrightarrow 2.45 \text{ X } 10^{-3} \text{ moles}$ $1000 \text{cm}^3 \text{ NaOH} \longrightarrow ?$ $? = 1000 \text{X} 2.467 \text{X} 10^{-3}$ 25 $= 0.0987 M^{1/2} mk$ 2mks No. of Moles of $H_2C_2 O_4$ (aq) used = <u>Average titre X Ans in Q 1</u> (i) = Ans (a) 1∕2 mk 1000 No of moles of NaOH used + 2X Ans (a) 25cm^3 of NaOH \longrightarrow 2X Ans (a) 1⁄2 mk →of NaOH 1000cm³ ? ? = 1000 X 2 X Ans (a) = Molarity $\frac{1}{2}$ mk 1000

TABLE II

	1 st	2^{nd}	3 rd	CT 1mk
Final burette reading (cm ³)	26.0	36.8	37.5	DP 1 mk
Initial burette reading (cm ³)	0.0	10.4	11.4	AC 1 mk PA 1 mk
Titre (cm ³)	26.0	26.4	26.1	FA 1 mk

05 mks

Conditions and penalties: are as in table I (i) Average titre in table I : 26.0 + 26.1 = 26.05 cm³ 2 Concentration of dilute HCl, solution D in mol⁻¹: (ii) $NaOH_{(aq)} + HCl_{(aq)} - NaCl_{(aq)} + H_2O_{(l)}$ Mole ratio 1:1 respectively $25 \times 0.0987 = 2.4675 \times 10^{-3}$ moles= No. of moles of D used in the exp. 1000 2.467×10^{-3} moles _____in 26.05cc ? in 1000cc $= 1000 \text{ X } 2.4675 \text{ X } 10^{-3} (^{1}/_{2} \text{ mk}) = 0.0947216 \text{ M}$ $\frac{1}{2} \text{ mk}$? 26.05 $1^{1}/_{2}$ mks 2.5 x Ans in (iii) of procedure I = Ans b. moles 1000 1/2 mk Ans. b moles – ▶26.05cc 1000cc ? $? = 1000 \text{ X Ans. b moles} \frac{1}{2} \text{ mk} = \text{Molarity of D}$ Average titre in Table II 1⁄2 mk Conditions and penalties: are as in (iii) of procedure I (iii) Concentration of A in Mol⁻¹ Solution D is a derivative of solution A 1000 cm^3 of D $----9.47216 \text{ X } 10^{-2} \text{ moles}$ 100cc of D ———? 1∕2 mk $? = 100 \times 0.0947216 = 9.47216 \times 10^{-3} \text{ moles} (\frac{1}{2} \text{ mk})$ 1000 100 cm³ of solution D has an equal No. of moles of solution A: Hence 10cm^3 \longrightarrow ? → 9.47216 X 10⁻³ moles 1000 cm3 $\frac{1}{2}$ mk ? = <u>1000 X 9.47216</u> X 10-3 10 = 0.947216 M 2mks 1⁄2 mk Procedure III Table III Time 30 60 90 120 150 180 210 240 270 300 0 (sec) 23.0 24.0 26.0 27.0 29.0 31.0 32.0 32.0 31.5 30.5 30.0 Temp $(^{\circ}C)$

Marks distributed as follows:

(i) Complete table with 11 readings 1mk.

(ii) Penalise $\frac{1}{2}$ mk if all readings given in the table are constant.

FIRST row.

- (iii) For the temperature readings showing continuous increase without a constant, penalise 1/2 mk for any reading above 45.0 $^{\circ}$ c to a maximum of $\frac{1}{2}$ mk.
- Penalise 1/2 mk and treat reading before candidates constant/ drop in temperature reading which (iv) are less than 15.0 °C as unrealistic to a maximum of 1/2 mk.
- For initial temp, treat temp. Below 10° C and those above 40° C as unrealistic and penalise $\frac{1}{2}$ mk (v) once.
- If the candidates reading starts with a constant, penalise 1/2 mk maximum and then award marks (vi) accordingly.
- ii) Use of decimals 1/2 mk
 - Conditions and penalties

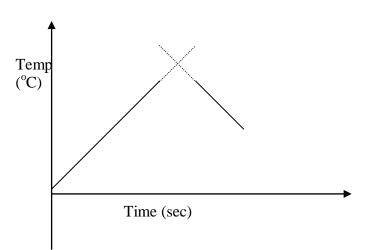
Accept ONLY if all readings are recorded CONSTANTLY as whole numbers or ONE decimal point of .0 or .5 other wise penalise fully.

iii) Accuracy (AC) ¹/₂ mk

Compare candidates FIRST READING with the SCHOOL VALUE / CENTRE VALUE. If within $+ 2^{\circ}$ C of the S.V /C.V award $\frac{1}{2}$ mk otherwise penalise fully.

iv) Trend 1 mk

3mks Graph


> Marks distributed as follows (a) L.A $\frac{1}{2}$ mk

Conditions / Penalties

- (i) Penalise fully for inverted axis.
- (ii) Penalise fully for wrong units: if no units are given ignore and award fully.
- If only one axis is labelled / units given, condition (ii) above is applied. (iii) ¹∕2 mk
- (b) Scale
 - Area occupied by the ACTUAL plots MUST be at least ³/₄ of the graph paper provided. (i)
 - Scale intervals MUST be constant / consistent. (ii)

1mk

- (iii) The scale chosen must be able to accommodate all the plots / points.
- (c) Plotting
 - Award 1mk if at least 10 points are correctly plotted. (i)
 - Award ¹/₂ mk if only 7-9 points are correctly plotted: otherwise if less than 7 points are plotted (ii) correctly: award 0 mk.
 - If scale intervals are inconsistent then accept plots if any within the FIRST interval only. (iii)
 - Accept plots even if the axis are inverted and award accordingly. (iv)

Award 1mk for an extrapolation

	(i)	Otherwise penalise fully Heat of reaction in this exp. $\triangle H = MC \triangle T$	
	-	$\Delta T = 32.5 = 23.0 = 9.5 \ ^{\circ}C$ $\frac{\frac{1}{2} \text{ mk}}{12 \text{ mk}} = -1.596 \text{ kJ}$ $\frac{1}{1000}$	(1 mk)
	(ii)	Moles of M used	
		1 mole -1600 <u>K</u> J ? -1.596 <u>K</u> J ? = <u>1 X -1.596 KJ</u> = 9.975 X 10 ⁻⁴ moles -1600 <u>K</u> J ($\frac{1}{2}$ mk) ($\frac{1}{2}$ mk)	(1 mk)
	(iii)	The mass of metal M 1 mole of metal M \longrightarrow 24g 9.975 X 10 ⁻⁴ moles \longrightarrow ? ?= 9.975 X 10 ⁻⁴ X 24= 0.02394g ¹ / ₂ mk ¹ / ₂ mk (1	mk)
,	a)	Observation	Inferences
		 Colourless vapour condense on the cooler part of test tube½mk A colourelss gas with a pungent smell evolved Gas changes red litmus ½ blue. " Has no effect on ✓ ½ blue litmus 	 Contains water of crystallization (Hydrated salt) NH4⁺ ion present

b.i)	

Observation	Inferences
- Green ppt formed ✓½ insoluble	- Fe^{2+} present \checkmark $\frac{1}{2}$ - NH_4^+ present \checkmark $\frac{1}{2}$
in excess	- NH_4^+ present $\checkmark \frac{1}{2}$
- Gas evolved turns moist red litmus paper blue	
- Gas evolved has not effect on blue litmus	

ii)	Observation	Inferences
	- green ppt formed ¹ /2mk - insoluble in excess ¹ /2mk	F^{2+} present $\sqrt{1/2}$

:	2	:	λ.
1	1	1	1

ii)	Observation	Inference
	-White ppt ✓1⁄2	$SO_4^{2^-}$, $SO_3^{2^-}$, or $CO_3^{2^-}$ present.
	-Insoluble on warming	N/B i) If 3 mentioned \checkmark 1 ½ mk
		ii) If 2 mentioned ✓ 1mk
		iii) If 1 mentioned $\sqrt{1/2}$ 1/2 mk
		Penalise each contradictory ion ¹ / ₂ to
		a maximum 1mk

iv)	Observation	Inferences
	-White ✓½ ppt	SO_4^2 present $\sqrt{1/2}$

Observations	Inferences
Solid disolves√½mk	Soluble salt $\sqrt{1/2}$ mk
(i)	

Observations	Inferences
White precipitate $\sqrt{\frac{1}{2}}$ mk	$Al^{3+}Zn^{2+}Pb^{2+}$ present $\sqrt{1/2}$ mk
White precipitate dissolves√½mk	$Al^{3+} Zn^{2+} Pb^{2+} present \sqrt{\frac{1}{2}mk}$

ii)

3

Observations	Inferences
White precipitate in drops $\sqrt{1/2}$ mk	$Al^{3+}Zn^{2+}Pb^{2+}$ present $\sqrt{1/2}mk$
White precipitate does not dissolve $\sqrt{\frac{1}{2}}$ mk	
	$Al^{3+} Pb^{2+} present \sqrt{\frac{1}{2}mk}$

iii)

Observations	Inferences
Yellow precipitate√1mk	Pb^{2+} confirmed present $\sqrt{1}$ mk
·)	

iv)

Observations	Inferences
White precipitate $\sqrt{1/2}$ mk	Pb ²⁺ present√½mk