233/2 – Chemistry - Paper 2 Marking Scheme

b) Ethanol and Conc. Sulphuric (vi) acid

c) Polypropene

d)Its non-biodegradable

ii) a)CarbonhydrogenOxygenmass
$$64.86$$
 13.51 $100 - 78.37 = 21.63$ RAM 12 1 16 Moles $64.86 = 5.405$ $13.51 = 13.51$ $21.63 = 1.352$ 12 1 16 Mole ratio $5.405 = 4$ $13.51 = 10$ $1.352 = 1$ 1.352 1.352 1.352

Empirical formula C₄H₁₀O

Molecular formula $(C_4H_{10}O)$ n

$$n = \frac{74}{74} = 1$$

Molecular formula $= C_4 H_{10}O$

- b) Alcohols / Alkanols
- c) $2C_4H_{10}O_{(1)} + 2Na_{(s)} \rightarrow 2C_4H_9ONa_{(aq)} + H_{2(aq)}$
- d) Displacement
- e) i) Butanoic acid

ii) Colour changes from purple to colourless/ purple colour of potassium manganate (VII) is decolourised

2 (A). i) a) no reaction

b) does not conduct

c) react readily

d) conducts

ii) a)
$$SO_3 + H_2O \longrightarrow H_2SO_4$$

b) $SO_3 + 2NaOH \longrightarrow Na_2SO_4 + H_2O$

iii) The reaction is highly exothermic producing sulphuric (vi) acid fumes which are harmful

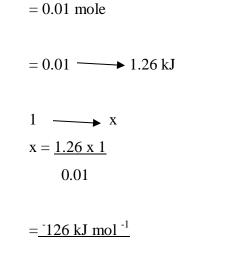
iv) P_2O_5 exists as a dimer (P_4O_{10}) with stronger covalent bonds than SO_3

v) Concentrated phosphoric acid exists in molecular form hence no ions. In dilute state the ions are free and mobile

(B)

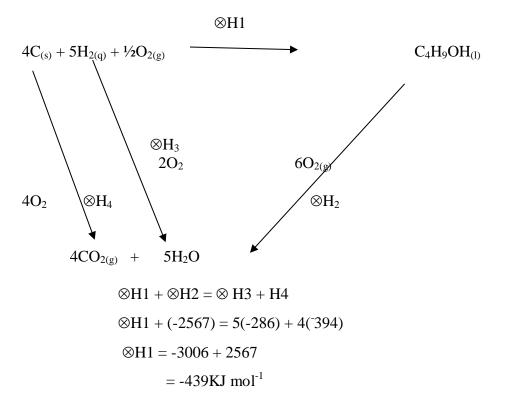
i) $H_2 + Cl_2 \longrightarrow 2HCl$

ii) to increase the surface area for the absorption of hydrogen chloride gas


iii) mass of 1L HCl solution = $1.18 \times 1000 = 1180g$

Actual mass of HCl = 35% of 1180 = 413g

Moles of HCl = 413/(1+35.5) = 11.31 moles/ litre


- 3. a) i) 31.0 25.0 = 6 C = 6K
 - ii) $50 \text{cm} \ge 1.0 \text{g/cm}^3 = 50 \text{g}$
 - iii) $50 \ge 4.2 \ge 6 = 1260$ joules
 - iv) Moles of copper(II) sulphate

<u>50 x 0.2</u> 1000

- v) $Fe_{(s)} + CuSO_{4(aq)}$ $FeSO_{4(aq)} + Cu_{(s)} \otimes H = 126 \text{ Kj mol}^{-1}$ (accept balanced ionic equation)
- vi) To make sure that all the Cu^{2+} has been displaced/ used up.

b) i) Any substance that can be burnt to produce energy

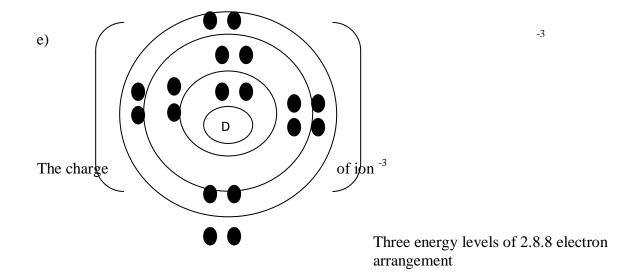
OR Use of equations

 $4CO_2(g) + 5H_2O_{(1)}$ $C_4H_9OH = 2567KJ/mol$ $4C_{(s)} + 4O_{2(g)}$ 4CO2(g) = -1576KJ $5H_{2(g)} + \frac{5}{2}O_{2(g)}$ $5H_2O_{(1)} = 1430KJ$ Heat of formation = 2567 + (-1576) + (-1430)

 $= -439 \text{KJmol}^{-1}$

4a) B or G <u>Reason</u>: - During ion formation it losses its two outermost electrons

b) IONIC or ELECTROVALENT


Two atoms of C will lose electrons to three oxide ions; C^{3+} and O^{2-} ions will form which will attract each other forming an ionic bond

c) - H is less reactive than E OR E is more reactive than H
 They react through gaining electrons; E has a greater <u>tendency to gain</u>

electrons(s)

mark than H due to its smaller atomic size // greater nuclear attraction

- d) G has a smaller atomic radius than F
 - i) OR F has a larger atomic radius than G
 Since atom G has increased nuclear attraction which tend to pull the outermost electrons closer to the nucleus
 - ii) Aqueous solutions of the oxide of B has a PH value above 7 while that of D is below 7 since the oxide of B is basic while that of D is acidic in nature

5.i) platinum or rhodium or platinized asbestos (any one 1mk)

(ii) Write any two equations for reactions taking place in step I.

 $4NH_{3(g)} + 50_{2(g)} - ---> 4NO_{(g)} + 6H_2O_{(1)}$

$$2NO_{2(g)} + H_2O_{(1)} \longrightarrow HNO_{3(aq)} + HNO_{2(g)}$$

$$4NO_{2(g)} + 2H_2O_{(1)} + O_{2(g)} \longrightarrow 4HNO_{3(aq)}$$

(accept any two equations)

(iii) $HNO_3 + KOH \longrightarrow KNO_3 + H_2O$

(*iv*) Explain how the reaction in step III takes place.

H_2S is oxidized by HNO₃ to sulphur because it loses hydrogen to form Sulphur.

(v) Name a chemical substance that can be added to solution K to form a solid. Zn, Mg, Fe, (metals above Cu in reactivity series) (vi) Write the formula of compound J.

NH₄NO₃

vii) Calculate the percentage of Nitrogen by mass that is present in compound J. R.F.M = 28 + 4 + 48 = 80

$$4\frac{28}{80} \times 100 = 35\%$$

(b) (i) Ammonia can be used to manufacture ammonium sulphate $(NH_4)SO_4$ and ammonium

. phosphate $(NH_4)PO_4$ fertilizers. Give one advantage that ammonium phosphate has over ammonium sulphate as a fertilizer

Calculation for percentage by mass of nitrogen in each fertilizer (1mk)

 $(NH_4)_3PO_4$ has more macro nutrients; more Nitrogen and Phosphorous necessary for plants. (conclusion 1mk)

6. a) (i) I. Cl^{-,} OH⁻

II. H^+

ii) Gases are oxygen and chlorine

At higher concentration CL⁻ ions are preferentially discharged to give chlorine

gas

When concentration of CL⁻ ions falls

Preferential discharge of OH⁻ ions occurs to produce oxygen gas

iii)
$$Q = 1t$$

 $= 2 \times 12000 = 12000$ coulombs

= moles of H₂=
$$\frac{24000}{2x96500} = 0.12435$$

= Volume of H₂ = $\frac{0.12435}{1}$ X 24000cm³
= 2984.4cm³

- b). Electroplating
 - Extraction of reactive metals
 - Purification of copper
 - Anodising aluminium
- c) (i) Na, has the most negative E^θ value,
 (ii) F, because it has the most positive E^θ value
 - (ii) E^{θ} cell = E^{θ} (Red) E^{0} (oxide)

$$= +2.87 - (-2.92)$$

= +5.79v

- 7. a) The surface area of lead (II) carbonate
- b) i) workable diagram

labeled reagents

measurement of volume

ii) all curves originate from origin

order of curves from top (2,1,3)

all curves flatten at same level

iii $PbCO_3 + 2HNO_3$

 $Pb (NO_3)_2 + CO_2 + H_2O$

c) When hydrochloric acid is used, an insoluble coating of lead (II) chloride is formed which prevents further reaction of the acid on the carbonate.