MARKING SCHEME.

233/1

CHEMISTRY

PAPER 1 THEORY.

1. a) -Components in air can be separated by physical means. $\sqrt{1}$ -Components in air are not in fixed proportions.

b, i. common salt/sodium chloride $\sqrt{1}$

- ii. Water. $\sqrt{1}$.
- iii) Brine / conc sodium chloride. $\sqrt{1}$
- 2. Red brown //brown fumes due to NO2. $\sqrt{}$
 - Red solid residue due to PbO.

3.	Na	O
%	59	41
RAM	23	16
Mole	59/23	41/16
	2.57	2.56
Mole ratio	2.57/2.56 = 1	2.56/2.56 = 1

E.F NaO

RFM of NaO. 23+16= 39

MM = (EF)n

78 = 39n

n = 2

M.F Na_2O_2 .

4. a) i) Cl⁻

```
ii. Fe<sup>2+</sup>
```

- b. The white precipitate will dissolve. $\sqrt{1}$
- 5. Raising the pressure. $\sqrt{1}$ lowering the temperature/ cooling. $\sqrt{1}$
- 6. a) Ammonium Chloride/ NH4Cl (accept either name or formula). $\sqrt{}$ 1
 - b) Sublimation. $\sqrt{1}$
- 7. Add a soluble carbonate $\sqrt{1}$ (e.g Na₂CO₃, K₂CO₃, (NH₄)₂CO₃

Filter the mixture wash the residue with distilled water $\sqrt{1}$ dry the residue between two filters.

- 8. a) Salt bridge. $\sqrt{1}$
 - b) E reduced E oxidized.

$$+0.80 - -0.13 \sqrt{1} = 0.93 \sqrt{1}$$

II)
$$C_2H_4$$
.

10. Aluminium is more reactive than zinc $\sqrt{1}$ hence offers a better sacrificial protection to iron against rusting. $\sqrt{1}$

11. The volume of a fixed mass of gas is directly proportional to its absolute temperature at constant pressure. $\sqrt{\,1}$

b)
$$V1/T1 = V2/V2$$

$$480/293 = 960/T2$$
 $\sqrt{1}$

$$T2 = 960X293/480$$

$$= 580$$
K or 3130 c

12. a) Existence of an element in two or more forms in the same physical states. $\sqrt{1}$

b)

ELEMENT		ALLOTROPES
(i)	Carbon	Diamond/ graphite
(ii)	Sulphur	Rhombic /monoclinic

13. (a) Water molecules are losing heat their kinetic energy decreases and thee molecules move closer to each other. $\sqrt{1}$

(b) Solid state.
$$\sqrt{1}$$

14. AlCl $_3$ (RMM 133.5) dimerizes $\sqrt{1}$ at 186° c to form Al $_2$ Cl $_6$ $\sqrt{1}$ (RMM 267).

15. a) iron catalyst $\sqrt{1}$

b)
$$4 \text{ NH}_{3(g)} + 5 \text{ O}_{2(g)}$$
 $4 \text{ NO}_{(g)} + 6 \text{H}_2 \text{O}_{(l)} \sqrt{1}$

c. - As a fertilizer

- Making explosives

16. a) Minimum amount of energy required to remove an electron from the outermost energy level of an atom in gaseous state.

b) II, IV, III, I.
$$\sqrt{1}$$

For metals the lower the ionization energy the more reactive the element. $\sqrt{\, 1}$

- 17. a) i) Carbon $\sqrt{1}$
 - ii) Hydrogen √1
- b) Carbon (iv) oxide and water.

18. a)

- b) 2 methyl butan -1 ol.
 - c) i) Chlorofluorocarbon. $\sqrt{1}$
- ii) Causes skin cancer $\sqrt{\,1\,}$ when high energy U.V radiations reach the earth.
- 19. a) Anhydrous (fused) calcium chloride / calcium oxide /silica gel. $\sqrt{1}$
 - b. Colour change from black to brown /

Colour of CuO change to brown. $\sqrt{1}$

- Colourless liquid formed on the cooler parts of the combustion tube. $\sqrt{\,1}$

c.
$$CuO_{(s)}$$
 + $H_{2(g)}$ $Cu_{(s)}$ + $H_2O_{(l)}$ $\sqrt{1}$

d. moles of copper = 2.5/64 = 0.0390625 moles

moles of CuO equals moles of Cu = 0.0390625

mass of CuO =
$$0.0390625 \times 80 = 3.125g$$

20. a) Q molten sulphur/mixture of molten sulphur and water.

R super heated water / hot water at 170° c.

- b. To increase pressure $\sqrt{1}$ in the sulphur beds hence forcing out the molten sulphur.
- c. Sulphur (iv) oxide bleaches by reducing $\sqrt{1}$ the dyes while chlorine bleaches by oxidizing dyes. $\sqrt{1}$
- 21. a) ZnSO₄ $\sqrt{1}$ at 40° c only26°c will dissolve leaving the rest undissolved /while all Pb(NO₃)₂ will dissolve.

b)
$$34 - 26 = 8g \sqrt{1}$$

22. a. A Bauxite /Al₂O₃.2H₂O

C solid Aluminium.

- b. Seeding process $\sqrt{1}$. Adding Al(OH)₃ $\sqrt{1}$ crystals into the solution containing complex ion Al(OH)₄ to enhance precipitation of Al(OH)₃ // bubbling CO₂ gas through the solution containing Al(OH)₄.
- c. Oxygen gas produced at the anode reacts with the hot carbon anode forming CO_2 gas, the reaction erodes the anode hence need to replace from time to time.
- 23. a) Hydrogen gas $\sqrt{1}$
- b) To increase surface area for absorption of hydrogen chloride gas. $\sqrt{\,1\,}$
 - c) pickling /removing rust on metals.
 - making drugs
 - Regulation of pH in beer industry. (Any one correct) $\sqrt{1}$
- 24. When temperatures in the ice -cream box increases the dry ice sublimes causing a cooling effect. $\sqrt{1}$

25. a)
$$Cu^{2+}_{(aq)} + 2e$$
 $Cu_{(s)} \sqrt{1}$

b) 63.5 g requires 2(96500) coulombs

1.184g ?

 $1.184 \times 2 \times 96500/63.5 = 3598.6c$

Q = It

Time = 3598.6/2 = 1799.3 secs1799.3/60 = 29.988 secs.

- 26. Argon is unreactive / it provides an inert atmosphere hence preventing oxidation of the filament. $\sqrt{\,1\,}$
- 27. a) Tetra ammine Zinc (ii) ions. $\sqrt{\,1}$

b)[$Zn(NH_3)_4$] $\sqrt{1}$]