cluster chemistry paper3 marking scheme

Term 2 2018

1a) 1	Table	4mks
-------	-------	------

Complete table with 6 readings1mk Incomplete with 4-5 readings ¹ /2mk	
Incomplete table with less than 4 readings0mk	
Decimal place1mk	
(Either a whole number or to 1dp consistently, if answer is given to 1d	p it
must be .0 or .5 used consistently otherwise penalise fully	
Accuracy1mk	
(tied to the 1^{st} temp reading. ± 2 of the schools value otherwise penalis	e
Δ fully for accuracy)	
Trend1mk	
Constant up to $1\frac{1}{2}$ min then either rises up to a maximum then falls	
1	
4	

1

Labelling of axes	1⁄2
Scale	1⁄2
Plotting	1mk
Line	1mk
(Constant temp from initial $^{1\!\!/}_{2}mk$, for continuous defined on the continuous of the continu	rop with
extrapolation ¹ /2mk)	

 $\left|\begin{array}{c} 1/2\\ 1/2\\ 1\\ 1\\ \frac{1}{3}\end{array}\right|$

Calculations b) ΔT must be from a correct graph.....1mk c) . 50×4.2×Ans in (b) above¹/₂ = correct Ans¹/₂

d)	
$\frac{252}{Ans}in (c)above in kJ \times 1\sqrt{\frac{1}{2}}$	
=correct Ans√½	
e) PROCEDURE 2	
Complete table1MK	
Decimal point1mk	
(Burette read to 1dp or to 2 dp consistently. If given to 2dp the second dp must 5or0)	
Accuracy1mk	
(Tied to school value. If within \pm 1, award 1mk,if outside \pm 0.1 but within \pm 0.2,award $\frac{1}{2}$ mk otherwise penalise fully)	
Averaging1mk	
(Values to be averaged must be within \pm 0.2 of each other)	
Final accuracy1mk(tied to the school value. Compare the students average titre value with the school value. If within±0.1 award 1mk, if outside ±0.1 but within ±0.2 award $\frac{1}{2}$ a mark otherwise penalise fully for final accuracy)	
ii) Moles of NaOH	
average titre $\frac{volume}{1000} \times 0.7\sqrt{\frac{1}{2}}$	
=correct Ans√½	
iii) Moles of sulphuric (VI) acid	Comment [WU1]: Oles of sulhurio
Mole ratio H2SO4:NaOH=1:2	
=ans in $e(ii)above imes 1/2\sqrt{\frac{1}{2}}$	
=correct Ans√½	

iv) Molarity of sulphuric acid

(Ans in e(iii) above: 250/25) \checkmark 1/2+(ans in d procedure 1 \checkmark 1/2 correct A) \times 1000/50 \checkmark 1/2

= Correct A√½ns

2. You are provided with solid C Carry out the following tests and write your observations and inferences in the spaces provided

a) Place a spatulaful of solid C in a boiling tube. Heat it gently then strongly. Test the gas produced if any using moist litmus papers

Observation s	inferences
Droplets of a colourless liquid	C is hydrated,/contains water of
form on cooler parts of	crystallisation $\checkmark \frac{1}{2}$
boiling ✓½tube; red litmus turns blue	NH₄ ⁺ 1mk ✓ ½
blue litmus remains blue √½1mk	

c.) put the rest of solid C in a boiling tube .Add 10cm³ of distilled water and shake. Divide the resulting solution into four portions
i) To the first portion add sodium hydroxide drop wise till in excess then

warm and test any gas given off using moist pH indicator paper

Observations	inferences
White ppt \checkmark ½ soluble in excess \checkmark ½	$Zn^{2+},Al^{3+},Pb^{2+} \checkmark 1$
pH 10 √ 12mk	Gas given out is weakly
	basic ~ 12mk

ii) To the second portion add ammonia solution drop wise till in excess

observations	inferences
White ppt $\sqrt{\frac{1}{2}}$ insoluble in excess $\sqrt{\frac{1}{2}}$	Pb ^{2+,} Al ³⁺ present Zn ²⁺ absent√1mk

iii) To the third portion add a few drops of lead (ii) nitrate and warm

observations	inferences
White ppt 🗸 🧏 insoluble on	Cl ⁻ absent ✓ ½
warming 🗸 ½mk	/SO₄ ^{2-,} SO₃ ^{2-,} ✓1mk

iv) To the fourth portion add dilute nitric (V) acid followed by barium nitrate

observations	inferences
White ppt, 🗸	So₄ ²⁻ 1mk ✓
No effervescence1mk	

3-you are provided with solid z carry out the tests described below and record your observations and inferences in the spaces provided'

a) Ignite half a spatulaful of Z on a non luminous flame

observation	inference
Burns with a yellow/luminous	=c=c=/,-C≡C- ✓1mk
flame ✓1mk	

- b) Place the remaining solid in boiling tube and 6cm³ of water and shake.
 Divide the resulting mixture into 3 portions
- c) To the first portion add acidified potassium manganate(vii) and warm

Observation	inferences
Purple colour of acidified KMnO4	=C=C=/-C≡C- ✓ ½and
turns colourless/decolorized ✓1mk	R-OH ✓ ½

d) To the second portion add acidified potassium dichromate (VI) and warm.

observations	inferences
Orange colour of acidified	R-OH absent ✓1mk
persists/does not turn green ✓1mk	

e) Using the remaining portion and the unused reagent, describe a procedure that can be used to test whether the solid is an organic acid and give expected observations if test is positive

description	observations
<i>Add NaHCO</i> ₃to the third portion ✓ (1mk)	Effervescence ✓ (1mk)

 f) carry out the test you have described in € above and record your observations and inferences in the spaces provided

observations	inferences
No effervescence	R-COOH absent