| Name               | Index No              |      |  |  |
|--------------------|-----------------------|------|--|--|
| School             | Candidate's Signature | Date |  |  |
| 233/3              |                       |      |  |  |
| CHEMISTRY          |                       |      |  |  |
| PAPER 3            |                       |      |  |  |
| PRACTICAL          |                       |      |  |  |
| MARCH / APRIL 2018 |                       |      |  |  |
| 2 ¼ HOURS          |                       |      |  |  |

# **INSTRUCTIONS TO CANDIDATES**

- (a) Write your name and index number in the spaces provided above.
- (b) Answer all the questions in the spaces provided.
- (c) Mathematical tables and silent electronic calculators many be used.
- (d) All working must be clearly shown where necessary.

# **FOR EXAMINER'SUSE ONLY**

| QUESTION    | MAXIMUM SCORE | CANDIDATE'S<br>SCORE |
|-------------|---------------|----------------------|
| 1           | 23            |                      |
| 2           | 12            |                      |
| 3           | 5             |                      |
| TOTAL SCORE | 40            |                      |

This paper consists of 8 printed pages

© SIJET TERM I 2018 CHEM **233/3** Page 1 of 8

## **1.** You are provided with:

- 1.5 g of solid P, a metal hydrogen carbonate, MHCO<sub>3</sub>.
- Hydrochloric acid, solution Q.
- Solution R, which was prepared by dissolving 10.5g of MHCO<sub>3</sub> in about 100cm<sup>3</sup> of distilled water and topping up to 250ml mark of the volumetric flask.

## You are required to:

- Standardize solution Q using solution R.
- Determine the enthalpy change for the reaction between solution Q, hydrochloric acid and solution R, MHCO3(aq).

## Procedure I

- (i) Pipette exactly 25.0cm<sup>3</sup> of solution R into a clean 250ml conical flask.
- (ii) Add two drops of methyl orange indicator and shake.
- (iii) Fill the burette with solution Q.
- (iv) Titrate solution R with solution Q from the burette. Stop titrating when a permanent colour JUST appears, and record your results in the **table I** below.
- (v) Repeat steps (i) to (iv) and complete table I below.

#### Table I

| Titration Number                | I | II | III |
|---------------------------------|---|----|-----|
| Final burette reading           |   |    |     |
| Initial burette reading         |   |    |     |
| Volume of solution Q used (cm³) |   |    |     |

b) Calculate the concentration of R in moles per litre (RFM of MHCO $_3$  = 84)

(4 marks)

(2 marks)

| a) Calculate the average volume of solution Q used. | (1 mark) |  |
|-----------------------------------------------------|----------|--|
|                                                     |          |  |
|                                                     |          |  |
|                                                     |          |  |
|                                                     |          |  |

© SIJET TERM I 2018 CHEM **233/3** Page 2 of 8

c) Calculate the number of moles of solution R in 25cm³ used.

d) Calculate the number of moles of solution Q in the average titre.

(1 mark)

e) Calculate the molarity of solution Q.

(1 mark)

#### PROCEDURE II.

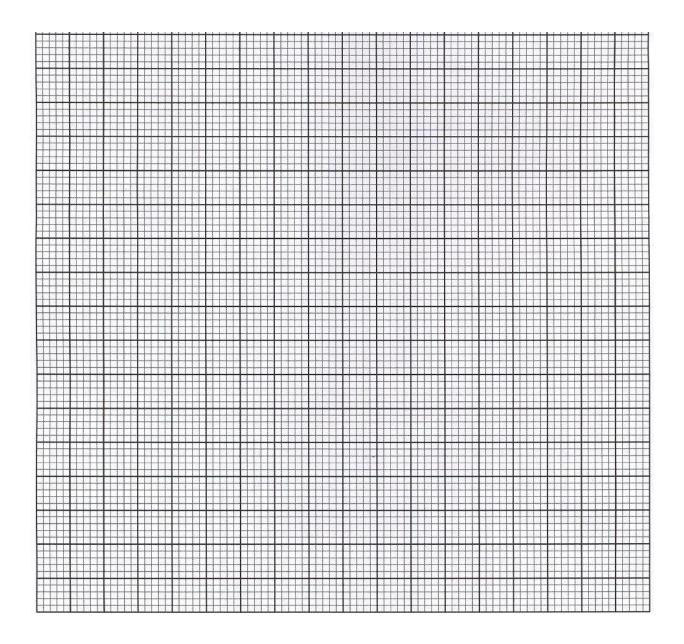

- (i) Fill the burette with solution Q.
- (ii) Measure exactly **35.0 cm³** of solution Q from the burette and place it in a clean 250cm³ plastic beaker.
- (iii) Using a thermometer, stir and take the temperature of solution Q every 30 seconds.
- (iv) Record the readings in **table II** below. At exactly 150 seconds add **ALL solid P** into the contents in the plastic beaker and stir gently. Continue taking the temperature every 30 seconds and complete the **table II** below.

Table II (5 marks)

| Time (s)               | 0 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 |
|------------------------|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| Temp ( <sup>0</sup> c) |   |    |    |    |     |     |     |     |     |     |     |

a) On the grid provided, plot a graph of temperature (Y -axis) against time. (3 marks)

© SIJET TERM I 2018 CHEM **233/3** Page 3 of 8



b) From your graph, determine the highest change in temperature. (1½ marks)

c) Calculate the;

(i) Enthalpy change in Joules for the reaction when 1.5g of solid P was used (specific heat capacity of the solution is 4.2Jkg<sup>-1</sup>k<sup>-1</sup>, density of solution is 1.0gcm<sup>-3</sup>) (2 marks)

© SIJET TERM I 2018 CHEM **233/3** Page 4 of 8

| (ii) Molar enthalpy change for the reaction              | . (1½ marks)                                   |
|----------------------------------------------------------|------------------------------------------------|
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
| 2. You are provided with the following:                  |                                                |
| Solid A                                                  |                                                |
| <ul> <li>Aqueous ammonia solution</li> </ul>             |                                                |
| <ul> <li>Distilled water</li> </ul>                      |                                                |
| Barium chloride solution                                 |                                                |
| <ul> <li>Dilute nitric (V) acid</li> </ul>               |                                                |
| <b>Solid A</b> is suspected to be <b>zinc sulphate</b> . |                                                |
| (a) Describe three consecutive tests that can            | be carried out in the laboratory to confirm    |
|                                                          | rite the test(s) and the expected observations |
| in the spaces provided below.                            |                                                |
|                                                          |                                                |
| Test 1                                                   | Expected observations                          |
|                                                          | Expected observations                          |
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
|                                                          |                                                |
| (1 mark)                                                 | (1 mark)                                       |

© SIJET TERM I 2018 CHEM **233/3** Page 5 of 8

| Test 2 | Expected observat | ions    |
|--------|-------------------|---------|
|        |                   |         |
|        |                   |         |
|        |                   |         |
|        |                   |         |
|        |                   |         |
|        |                   |         |
|        |                   |         |
|        | (1 mark)          | (1 mark |

| Test 3 |          | <b>Expected observations</b> |
|--------|----------|------------------------------|
|        |          |                              |
|        |          |                              |
|        |          |                              |
|        |          |                              |
|        |          |                              |
|        | (1 mark) | (1 mark                      |

(b) Carry out the tests described in (a) above and record your observations and inferences in the spaces provided.

Test 1

| Observations | Inferences |
|--------------|------------|
|              |            |
|              |            |
|              |            |
|              |            |
|              |            |
|              |            |
|              |            |
| (1 mark)     | (1 mark)   |

© SIJET TERM I 2018 CHEM **233/3** Page 6 of 8

Test 2

| Inferences |
|------------|
|            |
|            |
|            |
|            |
|            |
|            |
| (1 mark)   |
|            |

# Test 3

| Observations | Inferences |
|--------------|------------|
|              |            |
|              |            |
|              |            |
|              |            |
|              |            |
|              |            |
|              |            |
|              |            |
| (1 mark)     | (1 mark)   |

© SIJET TERM I 2018 CHEM **233/3** Page 7 of 8

| 3.                             | You are provided with an <b>organic</b> compound <b>solid</b> below. Write your observations and the inferences Place a spatula-endfull of solid B into a clean boiling | in the spaces provided.             |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|
|                                | and shake the mixture thoroughly. Use about 2cm³ portions for the tests (a)-(c) below                                                                                   | J.                                  |  |  |
|                                | (a)Add 2 drops of acidified potassium manganate (                                                                                                                       | VII) solution and shake.            |  |  |
|                                | Observations                                                                                                                                                            | Inferences                          |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                | (1 mark)                                                                                                                                                                | (1 mark)                            |  |  |
| [                              | (b) Add 2 drops of acidified potassium dichromate  Observations                                                                                                         | (VI) solution and warm.  Inferences |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                | (1 mark)                                                                                                                                                                | (1 mark                             |  |  |
|                                | (c) Add half spatula-endfull of solid sodium hydrog                                                                                                                     | en carbonate.                       |  |  |
| <b>Observations</b> Inferences |                                                                                                                                                                         |                                     |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |
|                                |                                                                                                                                                                         |                                     |  |  |

© SIJET TERM I 2018 CHEM **233/3** Page 8 of 8

 $(^{1}/_{2} \, \text{mark})$ 

 $(^{1}/_{2} \, \text{mark})$