233/3 CHEMISTRY PRACTICAL MARKING SCHEME

1. Table 1 5 mks - distributed as follows.

a) Complete table 1 mark

Conditions

i) Complete table with 3 titrations 1 mark

ii) Incomplete table with 2 titrations ½ mark

iii) Incomplete table with 1 titrations 0 mark

Penalties

i) Wrong arithmetic

ii) Inverted table

iii) Burette readings beyond 50cm³ unless explained e.g. 60cm³ (50 + 10)

iv) Unrealistic titre values i.e. values below 1.0cm³ and hundreds.

Note: Penalise ½mk ONCE for each or all of the above.

b) Use of decimals 1 mk (Tied to 1st and 2 rows only)

i) Accept either 1st and 2nd decimal places consistently otherwise penalise fully if whole numbers are used.

ii) Accept 2 decimal places if only 2nd dec. place is 0 or 5.

iii) Accept inconsistency of zeros.

c) Accuracy (1 mark)

Compare any of the titre values of the candidate with the school value.

Conditions.

i) If any is within $\pm\,0.1$ of S.V.1 mark

ii) If outside \pm 0.1 but within \pm 0.2 of S.V \ldots .½ mark

iii) If none is within ± 0.2 of S.V. 0 mark

d) Principles of averaging 1 mark

- Values averaged must be shown and must be within \pm 0.2 of each other.

Conditions.

i) If 3 consistent values averaged 1 mark

ii) If 3 titrates done and only 2 possible and averaged1 mark

iii) If 2 titrations done and are consistent and averaged 1 mark

iv) If 3 consistent titrations but only 2 averaged 0 mark

v) 3 inconsistent titrations averaged 0 mark

vi) 2 inconsistent titrations averaged 0 mark

Penalties

i) Penalise $\frac{1}{2}$ m for arithmetic outside ± 2 units in the second dec. place.

ii) Penalise ½mk if no working is shown but the answer is correct.

iii) Accept rounding off in the 2nd dec. place otherwise penalise ½mk if value is rounded off to the 1st dec. place.

Note:

i) Where values divide exactly to whole number or to 1 dec. place accept for full credit

ii) Section I must be marked before the mark is transferred on the table.

e) Final accuracy . . . 1 mark (tied to correct averaged titre)

i) If within ± 0.1 of S.V. . . . 1 mark

ii) If outside \pm 0.1 but within \pm 0.2 of S.V $\frac{1}{2}$ mark

iii) If beyond \pm 0.2 of S.V 0 mark

Note: If wrong values are averaged, pick the correct values, if any (especially the set that gives the candidate maximum credit), average following the principles of averaging and award accordingly.

i) ½mk for wrong or missing units

ii) Rounding off of answer to less than 3 dp. unless figures divide to whole no. 1 dec of a dec.

iii) Accept error of ± 2 in the 3rd decimal.

Calculations

b) Concentration of R m RFM gl R of ion Concentrationgl OR l mol or m R 5 .084 42 42 5 .10250 10001000 ? 250 5 .105 .0250 1000 845 .101 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Conditions / penalties

Note: All the figures above must be used intact otherwise penalise FULLY (0ml<) moles 0125.05 .01000 25 2 2

c) i) Moles of soln R in 25cm³

ii) Mole ratio of Q : R = 1 : 1

I Moles of Q in the averaged titre = Ans (c) above

Note:

i) Accept the transfer of answer c(i) to c(ii) intact even if wrong transfer it is wrong answer in (c) otherwise penalise ½ mk

for wrong transfer the answer. ans Correct above i AnsC a Ans 2 2) () (1000

d) Molarity of Q

 Table II : Procedure II 5 mks (Distributed as follows)

a) Complete table 3 marks

Conditions

10 to 8 readings 3 marks

7 to 5 readings 2 marks

4 readings 1 mark

Less than 4 readings . . 0 mark

Penalty - Penalise ½mk for every reading which is beyond 40°C and ½mk for every reading below 10°C.

b) Decimals ½ marks

i) Accept whole numbers or decimal to only 1 dec. place consistently used

ii) If 1 dec. place is used it must be (0 or 5)

Penalise FULLY if any of the two conditions are not met.

c) Accuracy ½ mk (Tied to the first entry)

Ist reading should be within ± 2°C of school value otherwise if outside ± 2 penalise FULLY.

d) Trend 1 mk (split into two ½ s)

i) Readings between 0 and 120 seconds must ALL be constant for ½mk otherwise penalise FULLY.

ii) Readings between 180 and 300 seconds must drop continuously or a drop followed by the lowest constant temperature readings.

Graph 3 mks (distributed as follows)

a) Scale ½ mk

Both axes must cover at least 4½ full squares otherwise penalise FULLY.

b) Labelling of axes ½ mark

Both axes must be correctly labelled otherwise if only is correctly labelled or both are incorrectly labelled (interchanged) penalise fully.

c) Plotting1 mark

i) If at least 7 readings are correctly plotted 1 mark

ii) If only six readings are correctly plotted $\ldots \ldots .\%$ mark

iii) If less than six readings are correctly plotted . . . 0 marks

d) Lines : . . . 1 mark (split into two and s)

i) 1st straight line touching constant points extrapolated to 150 seconds 221/2

ii) 2nd straight line rising and extrapolated to touch 150 seconds. 2 ½

Note: penalise ½ mk for each straight line not extrapolated to touch 150 seconds, GRAPH. Chemistry paper 1, 2&3 Top grade predictor publishers Page | 349 ans Correcti c p mole above i c Ans p of moles moles 2 2 2 2 2 1000))((0179.01 1 1000))((0179.00179

.0845.1

b)	Showing	on the	correct graph ??? 1/2
----	---------	--------	-----------------------

Change in temperature = lowest extrapolated temp. 22% - The constant temp.

= Correct answer 221/2

Conditions and penalties.

i) Ignore the sign on the temperature change, but the expression (Lowest extrapolated temp - constant) must be intact.

(As DT = T final - I Initial) otherwise penalise fully if that condition is not met.

ii) Penalise ½ mark if wrong or missing unit (°C) 1½ marks

CALCULATIONS

c) i) Mass of solution = $1gcm-3 \times 35cm^3 = 35g$ PP $\frac{1}{2}$

(reject answer if wrong working or working not shown but answer is correct)

PH = 35g × 4.2Jg-1k-1 × ans (b) = correct answer PP1 2 marks

Conditions / penalties

i) Accept ans(b) even if it was wrong but used intact.

ii) Ignore the sign but if given must be +ve otherwise reject the negative sign.

iii) Penalise ½mk if no. or wrong unit used.

C (ii) Molar heat changed

OR

Mole of P used

Conditions / Penalty

i) Penalise ½ mark if -ve sign is shown otherwise ignore if no sign is given

ii) Penalise ½ mark for missing or wrong units (kJmol-1)

2. OBSERVATION			INFERENCES		
a)	i)		Colourless liquid		Hydrated / water of
			formed on the co	ooler	crystallisation (Tied to
				rless	colourless liquid 🛯 ½/
			vapour condense	es on	vapour condenses)
			the cooler parts	of test	
			tube Reject colo	urless	
			solution/liquid		
			condenses		
ii)		Gas produced tu	rns litmus	Basic ga	s /NH4+ ඖ⁄₂ (tied to red
		paper blue 121/2 ar	nd blue litmus	litmus t	urning blue only
		remains blue. (A	ward ½mk if		
		both correct cha	nges in litmus		
		are mentioned) I	Reject blue		
		litmus remains tl	he same /		
		unchanged			
iii)			Brown/black/gre	ey residu	e. Conditions: Award
			1/2mk each for an	iy two co	rrect to a maximum of
			two (max 1 mark	<)	
b		Pale green soluti	ion formed 21/2	Fe2+, 🕮	⁴ Cu2+ [®] ¹ ⁄ ₂ Penalise ¹ ⁄ ₂ mk
				for any	wrong ion to a max of 1
				mk	

Expected observations
Solid A dissolves to form a colourless solution 21
(1 mark)
50

Test 2	Expected observations
To about 2 cm ³ of the solution above, add aqueous ammonia dropwise till in excess ☑1	White precipitate $\mathbb{P}^{1}/_{2}$ dissolves in excess to form a colourless solution. $\mathbb{P}^{1}/_{2}$

Test 3	Expected observations
To about 2 cm ³ of the solution above, add 3	White precipitate $\mathbb{P}^{1}/_{2}$ insoluble in the acid
drops of aqueous barium chloride 2 ¹ /2	₽ ¹ / ₂
followed by about 2 cm ³ of nitric (V) acid $\mathbb{P}^1/_2$	

(b)

Test 1

Observations	Inferences

1.		4
Solid A dissolves 2 ¹ / ₂ solution 2 ¹ / ₂	to form a colourless	 Soluble salt/polar compound¹/₂ Fe²⁺, Fe³⁺, Cu²⁺ absent ¹/₂

Test 2

Observations	Inferences
White precipitate 2 ¹ /₂ dissolves in excess to form a colourless solution. 2 ¹ /₂	Zn ²⁺ present ⊡1

Test 3

Observations	Inferences
White precipitate $\mathbb{P}^1/_2$ dissolves in the acid $\mathbb{P}^1/_2$	SO ₄ ²⁻ absent $\mathbb{P}^1/_2$ SO ₃ ²⁻ , CO ₃ ²⁻ present $\mathbb{P}^1/_2$

3. (a)

Observations	Inferences
Acidified potassium manganate (VII) solution is	
decolourised/ Acidified potassium manganate	=C=C=, -C=C- present 1 or
(VII) solution changes from purple to colourless	Unsaturated organic compound
?1	
	REJECT:
NB: Candidate should mention both the initial colour and the final colour except when they use the word decolourised .	Unsaturated hydrocarbon

(b)

Observations	Inferences
Acidified potassium dichromate (VI) turns from	ROH present
orange to green. 🛛 1	
	REJECT: =C=C=, -C=C- mentioned as present.

(c)

Observations	Inferences
Effervescence/ bubbles/fizzing ¹ / ₂	H⁺/RCOOH present ¹ /2
REJECT: Fizzling/hissing	REJECT: H ⁺ or H ₃ O ⁺ present mentioned on their own without RCOOH.