Ta	able I	(5MKS)
A)	Complete table	1mk
B)	Conditions Complete table with 3 titrations done Incomplete table with 2 titrations done Incomplete table with 1 titration done Use of decimal	1mk ¹ ⁄2 0mk 1mk
	 (The to initial and final burette reading not titre value) <u>Conditions</u> Accept 1 or 2 decimal places used consistently, otherwise penalizes If 2 decimal places are used, then the 2nd d.p must not be '0' or '5' of penalize fully Accept inconsistent in the use of zero's as initial burette reading 	fully otherwise
C)	Accuracy Compare the candidate's correct titre values with s.v and award as follows; i) If atleast with ±0.1 of s.vaward If none is within ±0.1 but atleast one is within ±0.2 of s.v award ii) If none is within 0.2 award oward	1mk ¹ ⁄2
D)	Principle of averaging	1mk

233/3 MARKING SCHEME

i)	If 3 titrations are done, they are consistent and averaged	1mk
ii)	If 3 titrations are done but only 2 are possible for averaging and averaged	1mk
iii)	If 2 titrations are done, and are consistent and averaged award	1mk
iv)	If 3 inconsistent titration are done and averaged	0mk
v)	If 3 consistent titrations done but only two averaged	0mk
vi)	If only one titration done	0mk

Penalties

Penalize ¹/₂ marks for no working shown but the answer given is correct

If answer given is correct but from wrong values award......0mk NB: Accept rounding off or truncation of the answer to the 2nd d.p Accept answer if it works out exactly.

E) <u>Accuracy</u>

(Tied to correct average titre)

Compre the candidate correct average titre value with the s.v and award as follows:

i)	If within ± 0.1 of s.v	1mk
	If not within ± 0.1 of s.v but within ± 0.2	¹ /2
ii)	If not within ±0.2	.0mk

CALCULATION

b) Cocentration in moles per litre of NaOH in

i) Solution N

Moles of L reacting = Av. Titre x 0.128 $\sqrt{\frac{1}{2}}$ = Answer (a)

Moles of **N** in 25cm³ = answer (a)

 $1000 \text{ cm}^3 = ?$

 $1000 \text{ cm}^3 \text{ x answer (a)} = \text{correct answer (I)}$

 25cm^3

(ii) Solution \mathbf{K}

Moles in $150 \text{cm}^3 = (\text{correct answer (I) x } 150) \div 1000 = \text{Answer (b)} \sqrt{\frac{1}{2}}$

Answer (b) $\rightarrow 25 \text{cm}^3$

? $\leftarrow 1000 \text{cm}^3$

 $(1000 \text{ x answer(b)}) \div 25 \sqrt{\frac{1}{2}} = \text{correct answer II}\sqrt{1}$

Procedure II:	Table II	6mks
A) Complete	table	3mks
Complete table with all entries		

i.e award 1/2 mk for each experiment done

Conditions

Treat initial readings of 0 or $<100^{\circ}$ C as unrealistic and penalize $\frac{1}{2}$ mk

Penalize $\frac{1}{2}$ mk if the initial temperature readings and final temperature readings are inverted

B)	Use	e of dec	cimal places	.1mk
	(Tied to initial and final temperature)			
	Acor .	cept wh .75 usec	hole numbers or readings to 1 d.p of 0, .5 or two decimal places of .00, .25, d consistently otherwise penalize fully.	, .50
C)	Ac	curacy.		.1mk
	Co	mpare t	the candidate initial temperature readings with that of s.v	
	If v	vithin ±	$\pm 2^{\circ}$ C award	1mk
	If c	outside :	$\pm 2^{0}$ C penalize fully	
D)	Τre	end	1	mk
	Co	ntinuou	is rise upto maximum $\frac{1}{2}$ followed by a drop in ΔT another $\frac{1}{2}$ mk.	
	-)	Court		21.
	a)	Graph	I chaling of oxig	$1/ml_{c}$
		1) ;;)	Labeling of axis	$\frac{72111K}{1/ml}$
		II) iii)	Plotting	./2111K
		111)	Totting	
	b)	Volum Extrap Extrap missing	the of sodium hydroxide solution K required to neutralize carboxylic acid polating graph with or without showing correct reading of V award polated graph shown correctly the value of V on graph but reading is wrong ang award	.1mk .1mk g/
	c)	Volum 2	ne of carboxylic acid solution M used in neutralization = 20-ans in (b)	
	d)	i) Ratio	o between the volume of solution K and M K : M Ans(b) : ans c	

ii. Concentration in moles per litre of carboxylic acid solution ${\bf M}$

Moles of K	= Answer (b) x correct answer1bII		
		1000	
= correct answer d(ii) (a)			
Moles of \mathbf{M}	=	correct answer d(ii) (a)	= correct answer
		Answer (b)	

\mathbf{a}	
4	•

Test 1	Expected observations	
 a) i) To solid M in a test tube/boiling tube, add dilute nitric (V) acid ¹/₂ Test the gas produced with a burning splint ¹/₂ Divide the resulting solution into portions for test (ii) and (iii) below. 	Expected observations e/boiling Bubbles ½/effervescence of a colorless gas. gas. th a Colorless gas that put off a burning splint the is produced ½ tions for Reject : fizzling Hissing colorless gas in its own	
Test 2 To the 1 st portion add aqueous ammonia dropwise until in excess ¹ / ₂	White ¹ / ₂ precipitate insoluble in excess ¹ / ₂ <u>Reject</u> :white solution	
Test 3 to the second portion add aqueous sodium iodide 1	Yellow precipitate1 Reject :any other colorNB: for tests 1-3 penalize ½mk when a candidate uses wrong formula of reagent otherwise penalize fully for wrong reagents	
 2 b) observations Test I colorless gas that puts off a burning splint Reject: fizzing Sizzling 	Inferences CO ₃ ²⁻ present Penalize fully for any other contradictory ion	
Colorless gas on its own	Inferences $Pb^{2+} Al^{3+} Zn^{2+}$ present.	

T4 3	
Decemedians	Penalize ¹ / ₂ for each contradictory ion
White precipitate ^{$\frac{1}{2}$} soluble in excess $\frac{1}{2}$	NB: where the test in 2(a) was not given or wrong then 2(b) not score.
	Yellow precipitate
Alternative of 2(a) (ii) Test 2	Reject : contradctory colors
Add aqueous sodium iodide to the first portion	White precipitate soluble in excess
Test 3 Observations	
To the second portion add aqueous sodium hydroxide drop-wise until in excess	Pb ²⁺ absent Penalize ¹ /2mk each for any contradictory ion to a maximum of 1mk
Alternative 2(b) Test 2 Adding sodium iodide No yellow precipitate	NB: where in test 2, the candidate uses sodium iodide solution followed by aqueous sodium hydroxide in test 3, accept part (a) completely, part b test 2 (a) and 2 (b) but reject test 3 observations and inferences.
 3) a) observations Melts into a colorless liquid¹/₂ Burns with smoky/sooty¹/₂// yellow flame i) partially dissolves ¹/₂to form colorless solution¹/₂ 	Inferences -C = C Long chain organic compound

b i) slow effervescence	H ⁺ /H ₃ O ⁺ /-COOH
//fizzing//formation of bubbles of colorless	
gas that puts off gas with pop sound	
ii) orange colour of $H^+/K_2Cr_2O_7 \frac{1}{2}$	R-OH Absent ¹ /2
persists// is retained	
NB: Reject colour of $H^+/K_2Cr_2O_7$ is	14 miles
retained	· CC ww
iii) and common horming mater	~)
decolorized	C= C
iv) Reject: bromine water turns	
colorless/decolorized	Accept: unsaturated organic compound.
Iv Method	
Place 1 cm^3 of solution T $\frac{1}{2}$ in a test tube	Inferences
Add 1-3 drops of universal ^{1/2} indicator	
solution	Weakly acidic ¹ / ₂
Match the colour obtained with the pH	
chart	Reject: weakly acidic
pH value 4	
-	
Reject: range pH 4-5	