

## 233/2 MARKING SCHEME



|   | SUB-TOTAL                                                                                                                               | 13                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|   | (v) G is more reactive than H. G loses its valence electrons with much ease than H $\sqrt{1}$                                           | 1                                                       |
|   | (iv) The ion has one energy level $\sqrt{1}$ less than H. G loses its valence electrons with much ease than H $\sqrt{1}$                | 2                                                       |
|   | NB: Penalize accordingly IF NOT balanced; 1/2 missing symbols                                                                           |                                                         |
|   | (ii) $P^{\frac{1}{2}}$ and $P^{\frac{1}{2}}$ OK P and I OK H and I<br>(iii) $2I_{(s)} + 2H_2O_{(l)} \rightarrow 2IOH_{(aq)} + H_{2(g)}$ |                                                         |
|   | G $\frac{1}{2}$ atomic number 20<br>(ii) F $\frac{1}{2}$ and H $\frac{1}{2}$ OR F and I OR H and I                                      | 1                                                       |
|   | b) (i) F $\frac{1}{2}$ atomic number 13                                                                                                 | 1                                                       |
|   | T $\sqrt{1}$ OR it has many protons than T                                                                                              |                                                         |
|   | (iv) Y is smaller than T. $\sqrt{1}$ since Y has greater nuclear charge than                                                            | 2<br>2                                                  |
|   | (iii) Transition metals 1<br>(iv) Y $\sqrt{1}$ ; it has the highest ability to attract electrons $\sqrt{1}$                             | $\begin{vmatrix} 1\\2 \end{vmatrix}$                    |
|   | (ii) $E_{(s)} + Y_{2(g)} \rightarrow EY_{2(g)}$                                                                                         | 1                                                       |
| 3 | a) (i) Element S 1                                                                                                                      | 1                                                       |
|   | SUB-TOTAL                                                                                                                               | 9                                                       |
|   | (iii) Large gullies left after the ore is excavated destroys the environment                                                            | mark each                                               |
|   | (ii) Dumping of the waste like the slag prevent vegetation growth                                                                       | correct<br>award 1                                      |
|   | c.(i) Acid rain may form due to presence of sulphur (IV) oxide (SO <sub>2</sub> ) and carbon (IV) oxide                                 | Any two                                                 |
|   | c(i) A cid rain may form due to presence of subbur (IV) oxide (SO <sub>2</sub> )                                                        |                                                         |
|   |                                                                                                                                         |                                                         |
|   | l'éstraction et l'ons                                                                                                                   |                                                         |
|   | copper A solution of Guzt                                                                                                               | CuCl <sub>2</sub><br>3mks                               |
|   | Impure {                                                                                                                                | $\begin{array}{c c} CuSO_4, \\ Cu(NO_3)_2, \end{array}$ |
|   | C 8 Rure copper C                                                                                                                       | solution with $Cu^{2+}$ i.                              |
|   |                                                                                                                                         | Any                                                     |
|   | coke is oxidized to carbon (IV) oxide.<br>b)                                                                                            |                                                         |
|   | (v) Reduction – oxidation (redox) reaction 1<br>This is because copper (I) oxide (Cu <sub>2</sub> O) is reduced to copper while         |                                                         |
|   |                                                                                                                                         |                                                         |

| 4 | a) (i) NB: scale $\sqrt{1}$                                                                                                                                                                                                                                                                                                                                                                    |                                                 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|   | Plot $\sqrt{1}$                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
|   | $Axis\sqrt{1}$                                                                                                                                                                                                                                                                                                                                                                                 | 3                                               |
|   | (ii) $V = 325 \text{ cm}^{3^{\vee}} \text{NB}$ , must be shown on the graph for full mark                                                                                                                                                                                                                                                                                                      | 1                                               |
|   | <b>b</b> ) $(540-410) \div 60 = 2.16 \text{cm}^3/\text{sec}$                                                                                                                                                                                                                                                                                                                                   | 1                                               |
|   | c) Some solid remained due to presence of unreacted copper $\sqrt{\frac{1}{2}}$ since copper is below hydrogen in the reactivity series $\sqrt{\frac{1}{2}}$                                                                                                                                                                                                                                   | 1                                               |
|   | <b>d</b> ) Volume of hydrogen = $640-2.5 = 637.5 \text{ cm}^3 \sqrt{\frac{1}{2}}$                                                                                                                                                                                                                                                                                                              |                                                 |
|   | moles of hydrogen = $637.5 \div 24000 = 0.02656\sqrt{\frac{1}{2}}$<br>mole ratio Al : H <sub>2</sub> = 2:3 based on equation                                                                                                                                                                                                                                                                   |                                                 |
|   | moles of Al = $0.02656 \ge 2/3 = 0.0177 \sqrt{\frac{1}{2}}$<br>mass of Al = $0.0177 \ge 27 = 0.478 \ge \sqrt{\frac{1}{2}}$<br>% Al = $(0.4748 \div 0.5) \ge 100 = 96.625\% \sqrt{\frac{1}{2}}$                                                                                                                                                                                                 | 3                                               |
|   | $\%$ AI = (0.4748 $\div$ 0.3) X 100 = 90.023% V72                                                                                                                                                                                                                                                                                                                                              | Any two                                         |
|   | e) It is cheaper than pure Aluminum 1                                                                                                                                                                                                                                                                                                                                                          | 1                                               |
|   | It is harder than Aluminum                                                                                                                                                                                                                                                                                                                                                                     | 1                                               |
|   | Lighter than Aluminum 1                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
| ~ | SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                      | <u>11</u>                                       |
| 5 | a) i) Ammonia 1<br>ii) Ammonium chloride 1                                                                                                                                                                                                                                                                                                                                                     | Reject                                          |
|   | iii) sodium hydrogen carbonate 1                                                                                                                                                                                                                                                                                                                                                               | formula                                         |
|   | iv) Calcium chloride/ water 1                                                                                                                                                                                                                                                                                                                                                                  | 101111111                                       |
|   |                                                                                                                                                                                                                                                                                                                                                                                                | -                                               |
|   | b) $2NH_4Cl_{(aq)} + Ca(OH)_{2(aq)} \rightarrow CaCl_{2(aq)} + 2H_2O_{(l)} + 2NH_{3(g)}$ 1                                                                                                                                                                                                                                                                                                     |                                                 |
|   | b) $2NH_4Cl_{(aq)} + Ca(OH)_{2(aq)} \rightarrow CaCl_{2(aq)} + 2H_2O_{(l)} + 2NH_{3(g)}$ 1<br>c) $carbon (IV) oxide \sqrt{/} calcium carbonate \sqrt{/} Brine \sqrt{/} Ammonia \sqrt{/}$                                                                                                                                                                                                       | Each 1<br>mark                                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                | mark<br>2mrk<br>Any one                         |
|   | <ul> <li>c) carbon (IV) oxide√/ calcium carbonate√/ Brine√/Ammonia√</li> <li>d) (i) G; Carbon (IV) oxide / ammonia/ water</li> </ul>                                                                                                                                                                                                                                                           | mark<br>2mrk<br>Any one<br>carry 1              |
|   | <ul> <li>c) carbon (IV) oxide√/ calcium carbonate√/ Brine√/Ammonia√</li> <li>d) (i) G; Carbon (IV) oxide / ammonia/ water</li> </ul>                                                                                                                                                                                                                                                           | mark<br>2mrk<br>Any one                         |
|   | <ul> <li>c) carbon (IV) oxide√/ calcium carbonate√/ Brine√/Ammonia√</li> <li>d) (i) G; Carbon (IV) oxide / ammonia/ water</li> <li>ii) Its denser than air 1</li> </ul>                                                                                                                                                                                                                        | mark<br>2mrk<br>Any one<br>carry 1<br>mark      |
|   | <ul> <li>c) carbon (IV) oxide√/ calcium carbonate√/ Brine√/Ammonia√</li> <li>d) (i) G; Carbon (IV) oxide / ammonia/ water</li> <li>ii) Its denser than air 1<br/>does not support combustion 1</li> <li>iii) There would be formation of PbSO<sub>4</sub> ½ which is insoluble ½<br/>. This insoluble PbSO<sub>4</sub> coats ½ the lead carbonate thus stops</li> </ul>                        | mark<br>2mrk<br>Any one<br>carry 1<br>mark<br>2 |
|   | <ul> <li>c) carbon (IV) oxide√/ calcium carbonate√/ Brine√/Ammonia√</li> <li>d) (i) G; Carbon (IV) oxide / ammonia/ water</li> <li>ii) Its denser than air 1<br/>does not support combustion 1</li> <li>iii) There would be formation of PbSO<sub>4</sub> ½ which is insoluble ½<br/>. This insoluble PbSO<sub>4</sub> coats ½ the lead carbonate thus stops<br/>further reaction ½</li> </ul> | mark<br>2mrk<br>Any one<br>carry 1<br>mark<br>2 |

| 6 | a) Lubricating oil, fuel oil, diesel, kerosene, petrol, bitumen, gasoline, naptha,                                                                                                                        | 2<br>Any four <sup>1</sup> / <sub>2</sub><br>each |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|   | <ul> <li>b) Thermal cracking is breaking down long chain alkanes using high temperatures</li> </ul>                                                                                                       | 2                                                 |
|   | Catalytic cracking involves breaking long chain alkanes at lower<br>temperatures in the presence of catalysts 1                                                                                           | 1                                                 |
|   | i) W $\rightarrow$ Fermentation $\frac{1}{2}$<br>c) X $\rightarrow$ Distillation $\frac{1}{2}$                                                                                                            |                                                   |
|   | ii) $B \rightarrow E$ thane $\frac{1}{2}$                                                                                                                                                                 | 1                                                 |
|   | $C \rightarrow$ sodium ethanoate $\frac{1}{2}$<br>Conc.                                                                                                                                                   | 1                                                 |
|   | iii) $C_2H_5OH \rightarrow C_2H_{4(g)} + H_2O_{(l)}$ 1<br>$H_2SO_4$                                                                                                                                       | 1                                                 |
|   | iv) $2C_2H_{6(g)} + 5O_{2(g)} \rightarrow 4CO_{2(g)} + 6H_2O_{(l)}$ 1<br>v) Brown/Yellow/Red bromine is decolorized in the presence of                                                                    | 2                                                 |
|   | sunlight; substitution reaction takes place 2<br>vi) RMM of ethene = 28 $\frac{1}{2}$<br>$28n = 112000 \frac{1}{2}$<br>$n = 112000 \div 28 \frac{1}{2}$<br>$= 4000 \frac{1}{2}$                           | 2                                                 |
| 7 | <ul> <li>a) Is the heat given out when one mole of a substance burns completely in air</li> <li>b) Enthalpy change for a reaction is the same whether the change is</li> </ul>                            | 1                                                 |
|   | brought about in one step or through various intermediate steps. OR<br>The energy changes in converting reactants to products is the same<br>regardless of the route by which the chemical change occurs. | 1                                                 |
|   | c) i) $3Cu_{(s)} + 4H_{2(g)} \rightarrow C_3H_{8(g)}$                                                                                                                                                     | 1                                                 |

