$\sqrt{\text{CHEMISTRY 233/1 MARKING SCHEME}}$

NO	ANSWER	REMARKS
1	a) The laboratory gas burns in excess oxygen 1 OR There is no unburnt	
	b) v'z Pale blue v'z Green blue Almost Glaurless v's	NB: ¹ / ₂ for straight shape of flame
		3
2	Crush the nuts using mortar and pestle 1	
	Add appropriate solvent e.g Acetone and continue crushing 1	
	Filter/decant the mixture to obtain a solution of oil in filtrate ¹ / ₂ Allow the filtrate/Acctone to evaporate in the sun ¹ / ₂	
		2
3	a) $2\Gamma_{(22)} \longrightarrow \Gamma_{2}(2) + 2e^{-1}$	3
	(aq) = (aq) = 22 (g) + 20 1	
	$Pb^{2+}{}_{(aq)} + 2e^{-} \longrightarrow Pb_{(s)} \qquad 1$	
	b) Extraction of reactive metals	Any: one
	Purification of metals	
	Electroplating Monufacture of nume shamicals a c Cl. NoOU ata	
	Manufacture of pure chemicals e.g C ₁₂ , NaOH etc	3
4	Molarity/ conce. Of NaOH = $8/40 = 0.2$	
	Moles of NaOH in 25 cm ³ = 0.2×25 = 0.005mol	
	$H^+ + 2OH^- \longrightarrow H_2O$: M.R = 1:2	
	Moles of acid = $\frac{1}{2} \times 0.005 = 0.0025$ mol	
	D M M = 0.245 = -0.9	
	$\begin{array}{c} \mathbf{K} \cdot \mathbf{M} \cdot \mathbf{M} = \underbrace{0.245}_{0\ 0025} = 98 \end{array}$	
		3
5	a) Zinc blende 1	
	b) $2ZnO_{(s)} + C_{(s)} \longrightarrow 2Zn_{(s)} + CO_{2(g)} = 1$	

	c)	Manufacture of dry cell ¹ / ₂	
		Galvanizing of iron ¹ / ₂	
			3
6	a)	(i) S 1 (ii) Q 1	
	b)	Sodium hydroxide/ potassium hydroxide 1	2
	•		3
	1) ii)	R 1 As the number of electrons the same energy level, nuclear attraction	
		increases leading to decrease in atomic facility f	2
0	2)	Emosoh meoooso 1	3
8	a)	Frasch process 1	
	b)	Hot compressed air 1	
	c)	Monoclinic/prismic ¹ / ₂	
		Rhombic/alpha ¹ / ₂	
			3
9	a)	A 2.8.1 ¹ / ₂	
		B 2.1 ¹ / ₂	
	b)	B 1: Strong attraction of outermost energy level electrons towards the nuclear 1	
			3
10	a)	Time taken for a given mass of a radioactive isotope to reduce to half its original mass 1	
	b)	No. of half-life $=$ 100 $=$ 4	
		$5/W = (\frac{1}{2})^4 = W = 80 \text{ g}$	
		$X \rightarrow \frac{1}{2}x \rightarrow \frac{1}{4}x \rightarrow \frac{1}{8}x \rightarrow \frac{1}{16}x$	
		1/16x = 5 g $x = 80 g$	
			3
11	a)	Equilibrium shifts to the right $\frac{1}{2}$ to replace ammonia gas absorbed by water molecule $\frac{1}{2}$	
	b)	Equilibrium shifts to the right $\frac{1}{2}$ to use up nitrogen gas added $\frac{1}{2}$	

	c)	Forward reaction is exothermic $\frac{1}{2}$ hence forward by low temperature: Equilibrium shifts to the right $\frac{1}{2}$	
			3
12	a)	(i) X- Bromoethene ¹ / ₂ N- Ethylhydrogen sulphate ¹ / ₂	
	b)	M- Bromine gas ¹ / ₂	
		$ \begin{bmatrix} H & H \\ C = C \\ H & H \end{bmatrix} n \longrightarrow \begin{bmatrix} H & H \\ C - C \\ H & H \end{bmatrix} n $ 1	NB;carbon atom MUST have 4 covalent bonds
10			3
13	a)	Rate of diffusion of fixed mass of a gas is inversely proportional to the square root of its density 1	
	b)	$R_{HCl} = 30/20 = 1.5 \text{cm}^3/\text{s}$	
		$1.5/R_{\rm B} = \sqrt{64/36.5}$ $R_{\rm B} = 1.1333 {\rm cm}^{3/{\rm s}}$	
		If $1 \sec = 1.1333 \text{ cm}^3$? = 42 cm^3 = 37 sec	
			3
14	a)	$CuO_{(s)} + H_{2(g)} \rightarrow Cu_{(s)} + H_2O_{(l)}$	
	b)	Add anhydrous copper II sulphate 1 to D, if changes to form white to blue 1 OR dip cobalt (II) chloride paper into substance D; if changes from blue to pink 1	
		<u> </u>	3
15	a)	R-O-OSO3 Na : Scopher 1 detergent 2	Accept K ⁺ in the reagent X
	b)	Non-biodegrable 1	
	- /		2
16	a)	Different forms of pure substance/Element existing in the same physical state 1	

3
3
3
3

		3
21	a) Chlorine \rightarrow melts and boils below room temperature (25 ^o C)	
	b) Bromine has large molecular/atomic mass $\sqrt{1}$ hence experience stronger $\sqrt{1}$ intermolecular force of attraction than chlorine	
	c) Chlorine has smallest atomic radius hence easily attract electrons /low shielding effect	3
22	a) $Q = It$ $= 0.5 \times (32 \times 60 + 10) = 9650 \sqrt{\frac{1}{2}}$ No. of faradays $= 9650 \sqrt{\frac{1}{2}}$ 96500 $= 0.01 F\sqrt{\frac{1}{2}}$ No. of Faraday liberating 1 mole $= (0.01 \times 88)\sqrt{\frac{1}{2}}$ 0.44 $= 2 F \frac{\frac{1}{2}}{2}$ b) XCl_2 $\frac{1}{2}$	
		3
23	 a) Light blue precipitate√ formed that dissolves√ in excess ammonia forming a deep blue√ solution b) Cu²⁺(a) + 2OH²(a) → Cu(OH)₂ (a)/ 	
	$\begin{array}{c} \text{Light blue} \\ \text{Cu(OH)}_{2 \text{ (s)}} + 4\text{NH}_{3 \text{ (aq)}} \rightarrow \mathbb{C}\text{u}(\text{NH}_{3})_{4} \mathbb{I}^{2^{+}}_{(\text{aq})} \\ \text{Deep blue} \end{array}$	
		3
24	i) $a \rightarrow Dative bond OR coordinate bond 1 b \rightarrow Covalent bond 1$	
	ii) $7 \ge 14e^{-1}$	
		3
25	i) ACl_3 1	
	ii) $2Al_{(s)} + 3Cl_{2(g)} \rightarrow 2AlCl_{3(s)}$ 1	
	iii) Prevents moisture from entering the apparatus 1	
26		3
26	a) When gases react, they do so in volumes that bear simple ratio to one another and to the products formed 1	
	b) $C_2H_x + 3O_2 \rightarrow CO_2 + H_2O_10 = 30 = 20 = 20$	

	1 3 2 2 1	
	X = 4 1	
		3
27	 a) Expel air from the combustion tube to avoid pre-oxidation of copper metal (hot) b) Brown copper metal turns black c) Nitrogen gas 	
		3
	TOTAL MARKS	80