FORM FOUR EVALUATION TEST END OF 2ND TERM – 2018 MARKING SCHEME PHYSICS PRACTICALS F.4 232/2 PP₃EXAM July/August

- 1. $\frac{360^{\circ}}{\theta} 1 = 5$ $\checkmark \text{Either}$ $360^{\circ} = 6\theta$ $= 60^{\circ} \checkmark$
- 2. To absorb echo sound \checkmark .
- 3. a) To separate the magnets. \checkmark
 - b) To complete the chain of dipoles.
- 4. The electrolyte used cannot spill.

The dry cell has a lower internal resistance. Dry cell is more portable as compared to accumulator. Dry cells and less expensive (only one \checkmark) Dry cell can be made in using small size to fit in small applications.

- 5. Reducing the number of turns.- Reducing the amount of current flowing through the coil.
- 6. Image formed by apparent intersection of light rays/images that cannot be formed on the screen.
- 7.

- 8. Glass is a poor conductor; radiant heat from sun has higher frequency than heat from wood, hence able to penetrate. $\sqrt{}$
- 9. To heat the filament. \checkmark
- 10.

- Correct lens ✓ (converging lens)
- Correct ✓incident ray
- Correct focused rays at the retina \checkmark
- 11. Effective capacitance in the circuit.

Q = CV
C = Q/V
=
$$\frac{5.4 \times 10^{-4}}{90}$$
 ✓
= 6.0 x 10⁻⁶ F

Capacitor C contains

Effective capacitance – Total capacitance in parallel Total capacitance in parallel $10 + 8 = 18 \ge 10^{-6}$ F

But A and B are in series with C.

Thus $\frac{18 \times C}{18 + C}$ = Effective resistance $6 \text{ UF} = \frac{18C}{18 + C} \checkmark$ 108 + 16C = 18 C 109 = 12C $9 = c \qquad \checkmark$ Capacitance for C = 9.0 x 10⁻⁶F. 12. F = 1 1

But T = 5cms = 5 x 10-=3S

$$F = \frac{1}{5.0} \times 10-3 = \frac{1000}{5} = 200H_Z$$

13. Gradient,

S = 21000 - 2000 \checkmark

$$25000 - 1300$$

= 1.667
$$E = \frac{1}{S} = \frac{1}{1.667} \checkmark$$

= 0.6V \checkmark

- 14. as resistance increases heating increases. $\checkmark 1$
- 15. a) Voltage across the

•

b) i)
$$VR = 4 \ge 12 = 48v \checkmark 1$$

 $V_{3ohms} = \frac{6}{5} \ge 12 = 14.4 V \checkmark 1$
E.M.F = $48 + 36 + 14.4 = 98.4V \checkmark 1$

ii) Total ratio =
$$3 + 2 = 5 \checkmark 1$$

$$A_1 = {}^2_{/5} x \ 12 = 4.8 \ A \checkmark 1$$
$$A_2 = 3/5 \ x \ 12 = 7.2 A \checkmark 1$$

c) i)
$$P = IV$$
, $I = \frac{v}{R}$

$$P = \frac{V^2}{R}$$
$$= \frac{240^2}{100} = 576 \text{ walts } \checkmark$$
ii)
$$V = IR \checkmark 1$$
$$I = \frac{240}{100} = 2.4 \text{ A}$$

16. a) i) To prevent loss of energy of the electrons as a result of collision with air particles in the tube before reaching the target.

- ii) Copper being a good conductor of heat helps in conducting away the heat produced. \checkmark
- Iii) The X rays produced are hard/more penetrating/WTTE.
- b) i) Cooling fins are used to cool the hot anode.
 - ii) X ray photographs can reveal injury or the infection of the tissue. \checkmark
 - Diagnosis of cancer \checkmark (Any two)

• Treatment of cancer

- c) To accelerate the electrons sufficiently to produce X rays when they strike the target. \checkmark
- d) i) K.E = C

$$= 1.6 \times 10^{-19} \times 250 \times 10^{3}$$
$$= 4.0 \times 10^{-17} J \times 10^{3}$$
$$= 4.0 \times 10^{-14} J$$

ii) X - ray energy = K.E of electron x 0.5%

$$\frac{4.0 \ge 10^{-14} \ge 0.5}{100} = 2.0 \ge 10^{-16} \text{J} \checkmark$$

a) Spreading out of the waves after passing through an opening or e barrier. $\checkmark 1$

b) I)

ii) I - Diffraction would be more pronounced $\checkmark 1$

II – There would be very minimum diffraction $\checkmark 1$

c) i)
$$d = \frac{30}{15} = 2cm$$

ii)
$$T = \frac{1}{f} = \frac{1}{20} \checkmark = 0.05$$
 seconds

iii)
$$V = \Lambda f \checkmark = 20 \text{ x } \underline{2} = 0.4 \text{ ms}^{-1} \checkmark 100$$

- ii) When light strike cathode, surface electrons gain photons (energy). $\checkmark 1$ Hence electrons escapes from the cathode $\checkmark 1$
- v) $E = hf \checkmark$

 $= 6.63 \times 10^{-34} \times 8.6 \times 10^{14} \checkmark$

vi) (Beta particles)

- Negatively charged \checkmark
- Have mass of an electron \checkmark only one
- Higher penetrative ability than $alpha \checkmark$
- Higher ionizing power than gamma \checkmark

19. a) i) Brown lead should be connected where the blue one is: Yellow to be connected where the brown is, and the blue lead to be connected where the green/yellow is connected. (Any two)

ii) No current will flow

- The earth pin opens the holes/blinders for the live and neutral. \checkmark Ensures it reaches the metallic part of the appliance/earthling. \checkmark iii) -
 - -

b) i)
$$\frac{75 \times 5 \times 5}{1000}$$
 = 1.875kwh

ii) 1.8875 x 7 x 6.7 = ksh 87.9375

**** **E N D** *****