233/3 CHEMISTRYMARKING SCHEME PAPER THREE

1.

a) **Table 1**

complete table -1mk decimal point -1mk accuracy - 1mk principles of averaging - 1mk final accuracy - 1mk i) $H_2A_{(aq)} + 2NaOH_{(aq)} \longrightarrow Na_2A_{(aq)} + H_2O_{(1)}\sqrt{1mk}$ b) **Note** : Penalize (1/2)mk) if state symbol missing otherwise. Penalize fully for wrong or unbalanced equation. iii) Concentration of NaOH. Method 1 Method 2 $\frac{M_1 V_1}{M_2 V_2} = \frac{1}{2} \sqrt{\frac{1}{2}}$ Moles of the acid = $\frac{0.01 \times 25}{1000} \sqrt{\frac{1}{2}}$ $0.01 \times 25 = 1 \sqrt{\frac{1}{2}}$ =0.00025 mol. $\sqrt{1/2}$ $\overline{M}_2 \times ans$ (a) above moles of NaoH $\sqrt{1}$ = 0.00025×2 $\sqrt{1}/2$ = correct ans. $\sqrt{\frac{1}{2}}$ $= 0.0005 \text{ moles} \sqrt{1/2}$ (max. 3 marks) Molarity of NaoH = $0.005 \times 1000\sqrt{\frac{1}{2}}$ answer in a above

= Correct ans. $\sqrt{1}/2$

Max. 3marks.

c) Temperature of solution of solid T = ± 2 s.v. $\sqrt{1}$

Note :

Temperature to be given as a whole number or to 1 dp (0.0 or 0.5) or to 2 d.p.(.25, .50 or .75) Otherwise penalize Fully.

<u>Tabl</u>	e 2 Complete table – 1mk decimal point . – 1mk Accuracy 1mk Principles of averaging – 1mk Final accuracy -1mk
d)	values averaged should be within ±0.2 of each other .
	Note :
	Decimal – given to 1 or 2 d.p consistently. Accuracy - \pm 0.1 s.v 1mk) \pm 0.2 s.v $\frac{1}{2}$ mk . otherwise penalize fully.
e)	Moles of acid T in 10cm ³ . Moles of NaOH = <u>ans. In b(ii)</u> × <u>average volume</u> $\sqrt{\frac{1}{2}}$ 1000 = correct ans. $\sqrt{\frac{1}{2}}$
	Moles ratio 1:1 : moles of acid T = Moles of NaoH = Correct ans. √1 (Max 2maks)
NB: I	Penalize fully for strange "values"
= <u>Co</u>	s of acid T in 100 cm^3 of solution of acid T. <u>rrect ans in e) i) above $x100 \sqrt{1/2}$</u> 10 rrect ans $\sqrt{1/2}$
Ŕ	bility of the acid. I of acid T, C ₇ H ₆ O ₂ = 122 n 100cm ³ of acid T = Correct ans in (e) (ii) Above. ×122 $\sqrt{1/2}$
	= correct Ans. $\sqrt{1}/2$ bility of acid T at Room Temperature rr. Ans above g/100g of water. $\sqrt{1/2}$
Note	: penalize $\frac{1}{2}$ for missing units .

2.

2

PROCEDURE	EXPECTED OBSERVATION
a) Step i. To solid F in a boiling tube, add distilled	F dissolves forming a colourless solution. $\sqrt{(1/2)}$
water $\sqrt{\frac{1}{2}}$ and shake. Divide into 4 portions.	
b) Step ii . To the 1 st portion	
add sodium hydroxide solution till excess. $\sqrt{(1/2)}$	No white ppt formed. $\sqrt{(1/2)}$.
c) Step iii) To the second portion add ammonia solution till excess. ½)√	No white ppt formed. $\sqrt{(1/2)}$
 d) Step iv) Dip a glass rod into the 3rd portion and place it on non-luminous Bunsen burner flame. (1/2) √ 	Golden yellow flame seen. (1/2) $$
 e) Step (v) To the 4th portion add aqueous barium nitrates√½ followed by dilute Nitric acid. √ ½ 	White ppt formed $\sqrt[1]{2}$ persist when HNO ₃ is added. $\sqrt{(1/2)}$
	(max. 6mks)
Note : Alternatively :	
Step V can be the step II , then.	
Step II to be step III.	
Step III to be step IV. Step IV to be step V.	
f)	

2. b)

OBSER	VATION	INFERENCES
i)	Dissolves $\sqrt{(1/2)}$ forming a colorless $\sqrt{(1/2)}$ (1/2) solution.	Soluble salt. $\sqrt{(1/2)}$
ii)	No white ppt formed. $\sqrt{(1/2)}$	Probably Na ⁺ , K ⁺ , NH ₄ ⁺ present. $\sqrt{(1/2)}$
iii)	No white ppt formed. $\sqrt{(1/2)}$	Probably Na ⁺ , K ⁺ , NH ₄ ⁺ , Present. $\sqrt{(1/2)}$
iv)	Golden yellow $\sqrt{(1/2)}$ flame observed .	Na ⁺ present. $\sqrt{(1/2)}$
v)	White ppt $\sqrt{(1/2)}$ formed dissolves when HNO ₃ is added $\sqrt{(1/2)}$ forming a colorless solution.	SO4 ²⁻ Absent. $\sqrt{(1/2)}$
	NB: Marks for 2b are tied to 2a above.	

INFERENCES
Polar compound / soluble
substance. $\sqrt{(1/2)}$
INFERENCES
R-OH – absent.1 $$
INFERENCES
$C = C \text{ or } -C = C^- \text{Present } \sqrt{1}$
INFERENCES
INFERENCES
$ C = C \text{ or } -C = C^{-} \text{ absent } \sqrt{1}$
$C = C \text{ or } -C = C^{-} \text{ absent } \sqrt{1}$
 C = C or $-C = C^-$ absent $\sqrt{1}$ INFERENCES
 C = C or $-C = C^-$ absent $\sqrt{1}$ INFERENCES
$ C = C \text{ or } -C = C \text{ absent } \sqrt{1}$ $ $ INFERENCES O $ $
$ C = C \text{ or } -C \equiv C^{-} \text{ absent } \sqrt{1} $ $INFERENCES$ $O R-COOH/-COOH / - C - OH$
$ C = C \text{ or } -C = C \text{ absent } \sqrt{1} $ $ $ $INFERENCES$ $O $ $R-COOH/-COOH / - C -OH $ $present.$
$\begin{vmatrix} & & \\ C = C \text{ or } -C = C^{-} \text{ absent } \sqrt{1} \\ & & \\ \hline \textbf{INFERENCES} \\ \hline O \\ & \\ R-COOH/-COOH / - C -OH \\ \text{present.} \\ \text{Accept H}^{+} \text{ For } \sqrt{(1/2)}\text{mk}) \\ \end{vmatrix}$

(E N D)