233/3 CHEMISTRY PAPER 3 FORM 4

Kenya Certificate of Secondary Education

END OF TERM II EXAMINATION MARKING SCHEME

1.Procedure Table 1 (5mks)

a) Complete table - 1mk Comple

te table with 3 titrations done – 1mk Incomplete table with 2 titrations done 1/2 mk

<u>Penalties</u>

-wrong subtraction

- Inverted table

-Burette readings beyond 50cm³ unless explained

-Unrealistic titre values eg less 1cm³ or in hundrends

Pennalise $\frac{1}{2}$ mk to Maximum $\frac{1}{2}$ mk

b)Use of decimals - (Tied to first and second rons only) 1mk

-Accept one or two decimals used consistency otherwise penalize fully (A ward zero marks)

-Accept inconsistency of use of zero's on the initial burette readings eg 0, 0.0, 0.00.

-If two decimals, use the second digit as 0. Or 5 otherwise penalize fully.

c)Accuracy – 1mk

Compare the candidates titre values with the school value and award as follows.

i)If at least one is within t 0.1 of S.V – 1mk ii) If none but at least one within t 0.2 of S.V – $\frac{1}{2}$ mk iii)If none within t 0.2 of S.V award 0 mk. d)Principle of averaging - 1mk i)3 Titrations done, 2 are consistent - 1mk ii) If only 2 titrations done, are consistent – 1mk e)Final Accuracy - 1mk - tied to correct average of titre - 1mk -Compare the candidate correct average titre with S.V. award as follows. i)If within t 0.10cm³ of S.V - 1mk ii) If not t 0.10 but within t 0.20 of S.V 1/2 mk iii) If not within T 0.20 cm³ of S.V 00mk b) 2NaOH = H - A $Na_{2}A + 2H_{2}O$ 2 moles 1 mole NaOH23 + 16 + 1 = 40Moles of NAoh Used = an

Moles of dibasic acid in 25cm³ of solution $M = \frac{1}{2} \times moles$ of NaOH Above c) (i) 250 cm^3 of M= ans (b) mole ratio 1: 2

 $250 \text{ cm}^3 \text{ of } \text{M} \frac{1}{2} \text{ X} 0.0025 =$ 1/2 MK II) Answer in (CI) X 1000 ¹/₂

```
Answer (a) ( average titre), \frac{1}{2}
```

- iii) <u>6.3</u> ans ½ answer C(ii) ½
- iv) r.f.m = 2 + 88 + 18n = ans C(iii)

18n = ans

Sample result				
F.B.R	18.9	18.8	18.7	
T.B.R	0.0	0.0	0.0	
Vol. of	18.9	18.8	18.7	
soln B				
used				

Procedure ii - table II

al) Complete table with 10 readings (3mks)

ii)Incomplete table with 8 or 9 readings (2mks)

iii) Incomplete table with 5 or 6 readings (1mk

iv)Less than 2 readings (0 -mk)

Penalise $\frac{1}{2}$ mk for incorrect 1/t or value rounded to less than 3 d.p. unless exact (maximum penaly 1mk)

b)Use of decimal ($\frac{1}{2}$ mk)

- should be whole member or 2 d.p consistent otherwise penalize fully.

c) Accuracy – 1mk

Compare the first record at 40° C of S.V to candidates readings.

 $H + 2^{\circ} C$ award 1mk otherwise penalize fully

d) Trend - $\frac{1}{2}$ mk

-Time progression should be consistent or continuous drop from 40° to 80°

a)Graph - 3mks as shown

i) Labelling of axes ($\frac{1}{2}$ mk)

ii) Scale ($\frac{1}{2}$ mk)

-Area covered by the graph (plots) should be at least half of the grid provided. -scale interval must be consistent on each axis.

iii) Plotting – (1mk)

- 3 4 [points correctly plotted award 1mk
- 2 points are correctly plotted $\frac{1}{2}$ mk
- Mark all points plots with a tick or cross
- iv) Line/ shape of graph- (1mk)
- Accept a correct line passing through at least 2 correct5 ly- plotted point and origin for . 1mk

b) Calculation for time at 65° C from graph time = Reciprocal of 1/t. 1mk c) The rate of reaction increases as the temperature increases due to K..e increases and collisions. 1

Question 2.

Observations	Inferences		
a)Solid melts $\frac{1}{2}$ Red litmus paper $\frac{1}{2}$	NH_4 + ions $\frac{1}{2}$ present / NH_3 gas		
turns	evolved.		
blue. Blue litmus paper turns red.	-Acidic ¹ ⁄ ₂ gas evolved hydrarted		
Colourless	salt.		
liquid seen in cooler part of test tube.			
b) Solid Q dissolves to form	Ionic compound / soluble salt		
i) Colourless solution ¹ / ₂	/polar ½		
ii) White ppt is formed	SO ²⁻ SO ²⁻ CL ⁻ SO ²⁻ present		
iii) White ppt formed insoluble in acid	SO ₄ ²⁻ Pb ²⁺ ,Al ³⁺ ions		
iv) White ppt formed 1 dissolves in	Zn ²⁺ Pb ²⁺ ,AL ³⁺ ions present		
excess to form colourless soln			
v)White ppt formed Insoluble in	Pb ²⁺ , Al ³⁺ ions present		
excess ½ mk	Dh2tions present 1/		
vi) white ppt formed $\frac{1}{2}$ dissolved on warming	Pb2 ⁺ ions present ¹ / ₂		
3.a) Soofty flame burns with smoky			
flame ½			
b) Dissolve to form a colourless	Polar organic compound ¹ / ₂		
generous solution			
c.i) No observable change 1mk)	R- OH absent		
ii) Effectivescene / bubbles seen	R -COOH or		
iii) Purple acidified KMnO ₄			
Decolourised (Turns colourless)			

- 2 -