NAME	INDEX NO.	
SCHOOL	SIGNATURE	
	DATE	

233/3 CHEMISTRY PAPER 3 (PRACTICAL) TIME: $2\frac{1}{4}$ HOURS JULY, 2017

KITUI COUNTY MOCK END OF TERM II FORM FOUR EXAMINATION, 2017

Kenya Certificate of Secondary Education (K.C.S.E)

233/3 CHEMISTRY PAPER 3 (PRACTICAL) TIME: $2\frac{1}{4}$ HOURS

INSTRUCTIONS:

- Write your name and index number in the spaces provided above.
- 0 Answer **ALL** questions in the spaces provided.
- You are **NOT** allowed to start working with the apparatus for the first 15minutes of the $2\frac{1}{4}$ hours

allowed for this paper. This time will enable you read through the question paper and make sure you have all the chemicals and apparatus required.

- 0 Mathematical tables and electronic calculators may be used.
- 0 All working **must be** clearly shown where necessary.
- O This paper consists of **8** printed pages
- Candidates should check to ensure that all pages are printed as indicated and no questions are missing

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE	
1	21		
2	12		
3	07		
TOTAL SCORE	40		

FOR EXAMINER'S USE ONLY

Tel:+254202319748 | +254 733 836593 | email: infosnkenya@gmail.com

Order answers online at: www.schoolsnetkenya.com

1. You are provided with;

- Aqueous hydrochloric acid labeled solution A.
- Solution B containing 8.0 g per litre of sodium carbonate.
- An aqueous solution of substance C labeled solution C.

You are required to determine the;

- Concentration of solution A.
- Enthalpy of reaction between hydrochloric acid and substance C.

Procedure I

Using a pipette and pipette filler, place 25.0cm³ of solution A into a 250ml, volumetric flask. Add distilled water to make 250cm³ of solution. Label this solution D.

Place solution D in a burette. Clean the pipette and use it to place 25.0cm³ of solution B into a conical flask. Add 2 drops of methyl orange indicator provided and titrate with solution D. Record your results in table 1. Repeat the titration two more times and complete the table.

Table 1

	Ι	II	III
Final burette reading			
Initial burette reading			
Volume of solution D used (cm ³)			

Calculate;

i) Average volume of solution D used.

ii) Concentration of sodium carbonate in solution B.

Tel:+254202319748 | +254 733 836593 | email: infosnkenya@gmail.com

(1 mark)

(4 marks)

(1 mark)

iv) Concentration of hydrochloric acid in solution A.

(1 mark)

Procedure II

Using a clean burette, place 2 cm³ of solution A into a boiling tube. Take the initial temperature of the solution in the boiling tube and record it in table 2. Using a clean measuring cylinder, measure 14 cm³ of solution C into 100cm³ beaker and add it to a solution A in the boiling tube. Stir the mixture immediately with a thermometer and record in table 2 the highest temperature reached. Repeat the experiment with the other sets of volumes of A and C in the table and complete it.

(Rinse the thermometer and the boiling tube with distilled water after each experiment)

Table 2

Volume of solution A (cm ³)	2	4	6	8	10	12	14
Volume of solution C (cm ³)	14	12	10	8	6	4	2
Initial temperature of solution C (°C)							
Highest temperature of solution C (°C)							
Change in temperature ΔT (°C)							

(5 marks)

i) On the grid provided, draw a graph of ΔT (vertical axis) against volume of solution A used . (3 marks)

Tel:+254202319748 | +254 733 836593 | email: <u>infosnkenya@gmail.com</u>

ii)	233 From the graph, determine;	3/3 Chemistry Paper 3
I	The maximum change in temperature.	(½ mark)
II.	The volume of solution A required to completely neutralize solution C.	(½ mark)
iii)	Calculate the;	
I.	Number of moles of hydrochloric acid required to completely neutralize solution C.	(1 mark)
II.	Molar enthalpy of reaction between hydrochloric acid and substance C (in kilojoules	s per mole of
	hydrochloric acid). Assume the specific heat capacity of the solution is 4.2 Jg ⁻¹	K^{-1} and density of
	solution is 1.0 gcm ⁻³ .	(2 marks)

- **2.** You are provided with solid Q. Carry out the following tests on Q and record your observations and inferences in the spaces provided.
- a) Place a spatula of solid Q into a boiling tube and add 12 cm³ of distilled water.
 Shake the mixture thoroughly. Divide the mixture into five portions.

Observations	Inferences
(1 mark)	(1 mark)

b) To the first portion, add 5 cm³ of 2M Nitric (V) acid.

Observations	Inferences
(1 mark)	(1 mark)

c) To the second portion, add four drops of lead (II) nitrate solution.

Observations	Inferences
(1 mark)	(1 mark)

d) To the third portion, add four drops of Barium nitrate solution.

Observations	Inferences
(1 mark)	(1 mark)

e) To the fourth portion, add sodium hydroxide solution dropwise until in excess.

Observations	Inferences	5
	(1 mark)	(1 mark)

f) To the fifth portion, add ammonia solution dropwise until in excess.

Inferences
(1 mark)

- You are provided with substance Y.
 Carry out the following tests on Y and record your observations and inferences in the spaces provided.
- a) Describe the appearance of solid Y. (1 mark)
- b) Scoop a little solid Y with a clean metallic spatula and ignite it using non-luminous part of the Bunsen burner flame.

Observations	Inferences
(1 mark)	(1 mark)

c) Add about 10 cm³ of distilled water to the remaining solid Y in a boiling tube.

Divide the resulting mixture into 2 portions.

i) To the portion one, add 3 drops of acidified potassium manganate (VII) solution.

Observations	Inferences
(1 mark)	(1 mark)

ii) To portion two, add sodium hydrogen carbonate.

Observations	Inferences
(1 mark)	(1 mark)