232/2 PHYSICS PAPER 2 (THEORY) JULY, 2017 TIME: 2 HOURS

KITUI COUNTY MOCK

END OF TERM II FORM FOUR EXAMINATION, 2017

Kenya Certificate of Secondary Education (K.C.S.E)

MARKING SCHEME

SECTION A

1. u = 20 cm, f = -15 cm, v = 20 cm $\frac{1}{v} = \frac{1}{f} - \frac{1}{u} \cdot 1 \cdot \frac{1}{15} - \frac{1}{20} = \frac{-4 - 3}{60} = \frac{-7}{60}$ $m = \frac{v}{u} = \frac{8.571}{20}$ = 0.4286 $v = \frac{60}{-7} = -8.571 \text{ cm}$

Position: Image is 8.571 from the optical centre on the same side of the object

- **2.** Enlarged hole allows more light to reach the screen $\checkmark \frac{1}{2}$
 - Enlarged hole allows multiple images to be $\sqrt{\frac{1}{2}}$ formed on the screen hence overlapping images
- **3.** a) 2.5V ✓ 1
 - b) 1.6V ✓ 1
- 4. 5. a) $a = 0 \sqrt{\frac{1}{2}}$ b) Energy $\sqrt{1}$ $N_S = V_S + (1 - 4) + V_S + (1 - 4)$
- 6. $\frac{N_s}{N_P} = \frac{V_s}{V_P} \checkmark^1 = \frac{4}{10} = \frac{V_s}{24} \checkmark^1$ $V_s = \frac{4 \times 24}{10} = 9.6 V \checkmark^1$
- 7. (-) lamps in parallel produce light of the same \checkmark^1 brightness
 - (-) When lamps are in parallel, failure in one does not affect others (-)
- 8. When the switch is closed, x-rays ionize the air particles between the plates, where the positive ions move to the negative plate, while negative ions move to positive plate ✓¹, completing the circuit hence a deflection is seen on the milliameter ✓¹
- **9.** This is because of most of the energy of the electrons that strikes the anode is converted into heat which causes the heating of the anode. \checkmark^1
- 10.

11. V = 330ms-1
$$\lambda = \checkmark^1 \frac{v}{f} = \frac{330}{440}$$

f = 0.44 kHz = 0.75 m ✓¹
1kHz = 1000Hz
∴ f = (0.44 x 1000)Hz = 440Hz
12.

13.
$$P = \frac{1}{f(m)} \checkmark^{1}, f = 40 \text{ cm} = 0.40 \text{ m}$$

= $\frac{1}{0.40} = +2.5 D \checkmark^{1}$

SECTION B

14. a) The electroscope discharges through the electrons flowing through your body \checkmark^1 to the ground.

b) i)
$$\frac{1}{C_1} = \frac{1}{C_2} + \frac{1}{C_e} \checkmark^1 = \frac{1}{3} + \frac{1}{6} = \frac{2+1}{6} = \frac{3}{6} \checkmark^1$$

 $C_e = \frac{6}{3} = 2f \checkmark^1$
ii) $Q_T = Q_1 = Q_2 \checkmark^1 = CV$
 $Q_T = 2 \times 10^{-6} \times 4 = 8\mu C \checkmark^1$
 $Q_A = 8\mu C \checkmark^1$
iii) $Q_B = 8\mu C \checkmark^1$
c)

15. a) i) Electrons are produced through thermionic emission due to heat energy \checkmark^1

- ii) Detected through the glowing of the fluorescent screen \checkmark^1
 - iii) I. Variable p.d in the grid controls the amount of electrons reaching the screen \checkmark^1
 - II. Variable p.d in the anodes ensures we have electrons of varying strength \checkmark^1
- b) i) Time base setting 20 ms/cm
 - $\lambda = 2cm$
 - \Rightarrow T = Time base setting × No. of division for one oscillation

$$= 20 \text{ms/cm} \times 2 \text{cm} = 40 \text{ ms} = \frac{40}{1000} \text{s} = 0.04 \text{ s} \checkmark 1$$

ii)
$$f = \frac{1}{T} \checkmark^{1} = \frac{1}{0.04} = \frac{100}{4} \checkmark^{1} = 25 \text{ Hz} \checkmark^{1}$$

16. a) $I = 0.02A$
 $t = 1 \text{ s}$ $Q = e\eta$

 $e = 1.6 \times 10^{-19} C$ but Q = ItNumber of electrons, n? \therefore en = It $\eta = \frac{It}{a} \checkmark^1$ $\eta = \frac{0.02 \times 1}{1.6 \times 10^{-19}} \checkmark^{1}$ = 1.25×10^{17} electrons \checkmark^1 b) If all KE = electrical energy, then; $\frac{1}{2}$ meV² = eV \checkmark ¹ $V^2 = \frac{2 eV}{me}$ $V = \sqrt{\frac{2 eV}{me}} = \sqrt{\frac{2 \times 1.6 \times 10^{19} \times 10^5}{9 \times 10^{-31}}}$ $= 1.886 \text{ x } 10^8 \text{ ms}^{-1} \checkmark^{-1}$ c) i) $f_o = 5.0 \times 10^{14} \text{ Hz} \checkmark^1$ ii) $\lambda_0 = \frac{C}{f_1} \checkmark^1 = \frac{3 \times 10^8}{5 \times 10^{14}} = 0.6 \times 10^{-6} \text{m}$ $= 6.0 \times 10^{-7} \text{m} \checkmark^{1}$ iii) $\frac{h}{2}$ = Gradient of the graph \checkmark^1 Slope = $\frac{\Delta Vs}{\Delta f} = \frac{2.5 - 0}{(11\ 20 - 5) \times 10^{14}} = \frac{2.5}{6.2} \times 10^{-14} = 4.032 \times 10^{-15} \checkmark 10^{-15}$ $h = slope \times e$ $= 4.032 \times 1.6 \times 10^{-19} \times 10^{-15}$ $= 6.4512 \times 10^{-34}$ Js \checkmark^{1} iv) $-\frac{W_o}{Q} = y - \text{intercept } \checkmark^1$ $-\frac{W_o}{a} = -2$ \checkmark^1 $W_0 = 2 x e$ $= 2 \times 1.6 \times 10^{-19} J$ $= 3.2 \text{ x } 10^{-19} \text{ J } \checkmark^{1}$ **17.** a) $r = 15^{\circ} \checkmark 1$ b) i) $\theta_1 = 20^{\circ} \checkmark^2$ ii) $\theta_2 = 70^\circ \checkmark^2$ c) i) Use of thick cables \checkmark^1 ii) Transmit power at high voltage to reduce or the current of transmission. Power loss $\alpha I^2 \checkmark^1$ d) i) $\frac{1}{\Re} = \frac{1}{2} + \frac{1}{4} \checkmark^{1} = \frac{2+1}{4} = \frac{3}{4}$ $\operatorname{Re} = \frac{4}{3} + \frac{3}{1} = \frac{4+9}{3} = \frac{13}{3} = 4.333 \Omega \checkmark^{1}$ ii) $I_T = \frac{V_T}{R_T} \checkmark^1 = \frac{2}{4.333} = 0.462 \checkmark^1$

18. a) i) The pointer of the galvanometer deflects to one side and then back to zero \checkmark^1

ii) It deflects to the opposite side and back again to zero \checkmark^1

b) i) Amount of voltage in the circuit when the switch is opened \checkmark^1

c) i)
$$R = \frac{V}{I} 1 = \frac{2.2}{0.4} = 5.5 \checkmark^{1}$$

ii) Non – ohmic – graph is a curve not a straight line \checkmark^{1}
d) i) e.m.f, E = 1.5v \checkmark^{1}

d) i) e.m.f,
$$E = 1.5v \checkmark^{1}$$

ii) $E = V + Ir$

$$r = \frac{1.5}{4} = \frac{1.5}{4} \checkmark^{1} = 0.375\Omega$$

r = 0.375 \Overline{1}