KITUI COUNTY MOCK

232/1 PHYSICS PAPER 1 (THEORY) JULY, 2017 TIME: 2 HOURS

END OF TERM II FORM FOUR EXAMINATION, 2017 Kenya Certificate of Secondary Education (K.C.S.E)

MARKING SCHEME

SECTION A

1. M.S = 8.00

T.S <u>= 0.30</u>

= 8.30mm \checkmark ¹ (Unit a must)

- **2.** Tube $A^{\checkmark 1}$ because air molecules move faster \checkmark^{1} than water molecules
- **3.** Upthrust \checkmark^1

Frictional force \checkmark^1

- 4. Let the point be x cm from pivot to the left side Clockwise movement = anticlockwise moment $(x \times 1) + 0.12(50 + x) = (50 - x) \ 0.18 \checkmark^{1}$ x + 6 + 0.12x = 9 - 0.18x1.3x = 3 $x = 2.307 \text{ cm} \checkmark^{1}$ Answer = $50 - 2.307 = 47.69 \text{ cm} \checkmark^{1} (4 \text{ sf})$
- 5.

6. To prevent skidding \checkmark^1 or overturning of vehicles at high speed.

7.
$$P = \frac{Fd}{t} \checkmark^{1}$$
$$= \frac{80 \times 10 \times 10 \times 0.2}{5} \checkmark^{1}$$
$$= 320W \checkmark^{1}$$

8. When fire breaks mercury \checkmark^1 is heated. It expands and makes contact with terminal $T\checkmark^1$, thereby completing the circuit and the bell rings.

9.
$$k = \frac{F}{e} = \left(\frac{W}{4}\right) mm$$
. For series $k = \frac{W}{4} \div 2$
 $= \left(\frac{W}{8}\right) mm \checkmark^{1}$
Total extension $= \frac{F}{k}$,
 $e = \left(\frac{W}{\frac{W}{8}}\right) = 8mm \checkmark^{1}$

- **10.** i) To remove air from the bottle \checkmark^1
 - Pressure imbalance on the inside and ✓¹ outside causes the higher atmospheric pressure on the outside
 - iii) The water drives air out of the bottle. On cooling, the steam inside condenses creating a region of low pressure \checkmark^1 inside. The higher \checkmark^1 atmospheric pressure deforms the bottle.
- **11.** Rate of change \checkmark ¹ of angular displacement with time.
- **12.** Make building stable by lowering \checkmark^1 the centre of gravity
- **13.** Pressure is inversely proportional to the \checkmark^1 speed or speed increases as pressure decreased

SECTION B

14. a) i) P.E = mgh
= 2 x 10 x 0.15√¹
= 3J√¹
ii) P.E = K.E = ½ mv²

$$v = \sqrt{\frac{2 K \cdot E}{m}} \checkmark^{1}$$

 $= \sqrt{\frac{2 \times 3}{2}} \checkmark^{1}$
 $= \sqrt{3} = 1.732 ms^{-1} \checkmark^{1}$
b) i) M₁V₁ + M₂V₂ = (M₁ + M₂)V
1 x 1 + 2 x 0 = (1 + 2)V √¹
1 = 3V
V = 0.3333 ms^{-1} √^{1}
ii) K.E = ½ mv²
= ½ x 3 x 0.3333² √¹
= 0.495J
iii) f_r = ma
a $i \frac{u^{2}}{2s}$
 $i \frac{1 \times 1}{2 \times 0.1} = \frac{1}{0.2}$
 $= 5 ms^{-2} \checkmark^{1}$
 $f_{r} = 3 x 5$
 $= 15 N \checkmark^{1}$

c) Velocity reduces to zero then increases \checkmark^1 to maximum value.

The body is thrown upwards \checkmark^1 and coming back where it was released from

a) Bodies in circular motion change ✓¹ the direction at different instant implying a change of velocity ✓¹ thus accelerates ✓¹

b) i)
$$V = rw$$

 $w = \frac{v}{r}$
 $v = \frac{2}{2} = 1ms^{-1} \checkmark^{1}$
 $w = \frac{1}{5} = 0.2 rads^{-1} \checkmark^{1}$
ii) $w = \frac{2\pi f}{T}, f = \frac{w}{2\pi} \rightarrow T = \frac{2\pi}{w}$
 $= \frac{2\pi}{0.2} \checkmark^{1}$
 $= 31.42 \checkmark^{1} seconds$

- c) $T = mg + mrw^2$ = 0.04 x 10 + 0.04 x 0.5 x (0.2)² \checkmark^1 = 0.4 + 0.0008N \checkmark^1 = 0.4008N \checkmark^1
- d) As the clothes rotates in the spin driver, the fibre of the clothes cannot ✓¹ provide sufficient centripetal force for the most of the water to make it ✓¹ go round in a circle. The water tends to fly off at a tangent to the circle and so move towards the wall where it gets out through ✓¹ the holes
- e) Mass ✓

Velocity 🗸

Radius \checkmark

(Any 2 correct)

- **16.** a) H.C is the quantity of heat required to change ✓ any mass of substance by 1°C or 1k. Whole s.h.c in the heat required to change a unit mass of substance by 1k.
 - b) i) Time, temperature rise, current (I) and p.d (V), mass of liquid, mass of calorimeter and its contents.

(Any 4 correct (2 marks)

- ii) After t seconds, the new temperature is noted from the initial temperature of liquid. \checkmark
 - Corresponding I and p.d should be ✓¹ noted. With the other variables the specific heat capacity in obtained from.

$$C = \frac{VIt - M_c C_c \Delta \theta}{M_L \Delta \theta} \checkmark^{T}$$

iii) Ensure continuous stirring of the liquid. \checkmark^1

c)
$$pt = 0.4 \ge 900 \ge 10 + 1 \ge 4200 \ge 10^{-1}$$

 $2000t = 3600 + 42000 \checkmark^{-1}$
 $t = \frac{45600}{2000}$
 $= 22.8 \text{ seconds }\checkmark^{-1}$

17. a) Product of force and distance \checkmark^1 moved by an object. SI unit – Joule or NM \checkmark^1

b) i) W = mgh
= 500 x 10 x 4
$$\checkmark^{1}$$

= 20000J \checkmark^{1}
ii) P = $\frac{w}{t} = \frac{20,000}{8} \checkmark^{1}$
= 2,500w \checkmark^{1}
iii) $\frac{Power Output}{Power Input} \times 100 \checkmark^{1}$

$$= \frac{2500}{2800} \times 100 \checkmark^{1}$$
$$= 89.29\% \checkmark^{1}$$

iv) - Friction of the moving parts \checkmark^1

Work done in lifting the parts of the machine \checkmark^1

- Work doi
18. a) i)
$$L = 3.0 \text{ cm} \checkmark^{1}$$

ii) Gradient =
$$\frac{8.5 - 4.5}{0.85 - 0.25} \checkmark^{1}$$

= $\frac{4}{0.6}$
= 6.667 cm/N \checkmark^{1}
iii) $\frac{1}{slope}$
= $\frac{1}{6.667} \checkmark^{1}$
= 0.15 N/cm or 15 N/m
b) w = w_{air} - u
= 25 - 14 \checkmark^{1}

c) Weight of stone alone \checkmark^1 is greater than upthrust, however stone and wood have smaller weight than upthrust \checkmark^1