KITUI COUNTY MOCK

233/2 CHEMISTRY PAPER 2 (THEORY) JULY, 2017 TIME: 2 HOURS

END OF TERM II FORM FOUR EXAMINATION, 2017 Kenya Certificate of Secondary Education (K.C.S.E)

MARKING SCHEME

- 1. a) Carbon = 6 $\checkmark \frac{1}{2}$ mk, Hydrogen = 1 $\checkmark \frac{1}{2}$ mk, Sodium = 11 $\checkmark \frac{1}{2}$ mk, Neon = 10 $\checkmark \frac{1}{2}$ mk
 - b) Ca^{2+} 2.8.8 \checkmark 1 mk P^{3-} 2.8.8 \checkmark 1 mk
 - c) $-259 + 273 = 14 \text{K} \checkmark 1 \text{ mk}$
 - d) Red phosphorous $\checkmark 1$ mk it has a higher melting point $\checkmark 1$ mk
 - e) The one with atomic number 24 ✓ 1 mk because the mass number is closer to the relative atomic mass(R.A.M) showing that it contributes to R.A.M more than the other two isotopes ✓ 1 mk
 - f) $Al_4C_3 \checkmark 1 mk$

c)

- g) Melting point of magnesium is higher than that of sodium ✓1 mk because magnesium has more (2) delocalized electrons compared to sodium (1) hence it has strong metallic bonds ✓1 mk
- 2. a) i) Hot compressed <u>air</u> \checkmark 1 mk
 - ii) In order to melt suplhur in the deposits $\checkmark 1 \text{ mk}$
 - iii) It is insoluble in water $\checkmark 1 \text{ mk}$
 - Its melting point ids lower than that of super-heated water $\checkmark 1 \text{ mk}$
 - b) i) $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)} \checkmark 1 \text{ mk}$
 - ii) To dry sulphur (IV) oxide and air
 - iii) Platinum
 $\checkmark 1$ mk, Vanadium (V) oxide $\checkmark 1$ mk
 - iv) It cools the products from the catalytic chamber $\checkmark 1 \text{ mk}$
 - It prevents the reactants getting into the catalytic chamber $\checkmark 1~{
 m mk}$
 - It dissolves in water vapour in the air leading to formation of acid rain $\checkmark 1 \text{ mk}$
 - d) A black mas is formed, concentrated H2SO4 is a dehydrating agent. It removes elements of water (hydrogen and oxygen) leaving behind carbon ✓1 mk
- 3. a) Type of flame produced by the fuel
 - Amount of heat produced during combustion
 - Effects of products formed on the environment

(Any two)

- b) i) Heat produced = MC Δ T Δ T = 46.5 - 25 = 21.5°C \checkmark 1 mk Δ H = 450 x 4.2 x 21.5 \checkmark 1 mk = -40635J \checkmark 1 mk
 - ii) Moles of ethanol = $\frac{1.5}{46} \frac{1}{2} mk$

¿0.0326 moles ½ mk

Molar heat =
$$\frac{40653}{0.0326}$$
^{1/2} mk
i - 1246472.392 J/mole ^{1/2} mk

- c = 12404/2.392 J/mole /2mk
- NB: penalize ½ mk for wrong units - Penalize ½ mk for missing or wrong sign
- c) $C_2H_5OH_{(aq)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2OH_{(l)} \checkmark 1 \text{ mk}$ *NB: Penalize* ¹/₂ for wrong / missing state symbol
- d) Heat loss by radiation / conduction / convectional current \checkmark 1 mk
- 4. a) i) Fractional distillation \checkmark 1 mk
 - ii) Boiling point $\checkmark 1 \text{ mk}$
 - Molecular mass / density ✓1 mk

b) i)
$$C_4H_8 \checkmark 1 \text{ mk}$$

ii) Use acidified potassium manganate (VII), C₃H₈ does not decolourise it while C₄H₈ decolourises it from purple OR

Use acidified potassium dichromate (VI), C_3H_8 does not change it from orange to green will C_4H_8 does

d) i) Ethanol $\checkmark 1 \text{ mk}$

P

- ii) It is slightly soluble in water $\checkmark 1 \text{ mk}$
- e) Name: polythene ✓ 1 mk
 Disadvantage: it is non-biodegradable hence causes pollution ✓ 1 mk
- a) i) Cl₂ ✓1 mk It has a positive standard electrode potential hence a higher tendency to gain electrons ✓1 mk

$$\begin{array}{rll} \text{ii)} & Cl_{2(aq)}+2e^{-} \rightarrow 2Cl^{-}{}_{(aq)} & E^{\theta}=\pm1.36V\\ & \underline{Mg_{(s)}} \rightarrow \underline{Mg^{2^{+}}_{(aq)}+2e^{-}} & E^{\theta}=\pm2.36V\\ & & E^{\theta}=\pm3.72\\ & & E^{\theta}=\pm3.72V \end{array}$$

b) i) Metal S: it has the highest negative e.m.f hence a high oxidizing power therefore low tendency to gain electrons and be displaced ✓ 1 mk

II. P:
$$P^{2+}_{(aq)} + 2e^{-} \rightarrow P_{(s)}$$

Q:
$$Q_{(s)} \rightarrow Q^{2+}_{(aq)} + 2e$$

III. - It completes the circuit $\checkmark 1 \text{ mk}$

- It ensures electrical neutrality and balance of ions between the two cells $\checkmark 1$ mk

IV. The salt in the bridge should not react with ions in the solution

iii) I.
$$E^{\theta}$$
 cell = E^{θ} reduction + E^{θ} oxidation

II. Q, R, Z, P (2 marks)

6. a) Solubility is the maximum mass for solute that dissolves in 100g of a solvent (water) at a particular temperature to make a saturated solution.

b)

- - ii) 60.5±1°C
- d) $60 20.7 = 39.3g \checkmark 1 \text{ mk}$
- e) 13 g ✓ ½ mk of X will crystallize, salt Y will be in solution ✓ ½ mk the solubility of X is lower than the mass dissolved while that of Y is higher than the mass dissolved ✓ 1 mk
- f) Fractional crystallization $\checkmark 1 \text{ mk}$
- 7. a) To remove any oxide film on it 1 mk
 - b) A white solid is formed 1 mk
 - c) Due to the oxygen which combines with magnesium
 - d) $2Mg_{(s)} + O_{2(g)} \rightarrow 2MgO_{(s)} \checkmark 1 \text{ mk}$
 - e) The filtrate is magnesium hydroxide ✓1 mk which is an alkaline, there was no change in the blue litmus paper ✓½ mk but the red litmus paper turned blue ✓½ mk
 - f) $2(24g) \rightarrow 2400 \text{ cm}^3$ $2.4g \rightarrow ?\checkmark 1 \text{ mk}$ $2.4g \rightarrow ?\checkmark 1 \text{ mk}$ $2.4g \rightarrow ?\checkmark 1 \text{ mk}$ $2.4g \rightarrow ?\checkmark 1 \text{ mk}$