KITUI COUNTY MOCK

233/1 CHEMISTRY PAPER 1 (THEORY) JULY, 2017 TIME: 2 HOURS

END OF TERM II FORM FOUR EXAMINATION, 2017 Kenya Certificate of Secondary Education (K.C.S.E)

MARKING SCHEME

- 1. a) i) K ✓ 1mk
 - ii) J√1mk
 - b) In methylbenzene HCl remains as s molecule / does not ionize hence is neutral \checkmark 1mk
 - c) L is a better conductor than J ✓½ mk because L is a strong acid which ionizes fully to give more hydrogen ions ✓1 mk
- 2. i) Vulcanization $\checkmark 1 \text{ mk}$
 - ii) Saponification $\checkmark 1$ mk
- 3. a) Nitrogen $\sqrt{\frac{1}{2}}$ mk
 - Argon ✓ ½ mk
 - b) Used in hospitals by patients with breathing difficulties
 - Used by mountain climbers and deep sea divers
 - Mixed with hydrogen to provide fuel for space rockets
 - Oxyacetylene flame is used in welding and cutting metals (any 2 mks)
- 4. a) Magnesium burns with a bright light $\sqrt{1/2}$ mk A white powder is formed $\sqrt{1/2}$ mk
 - b) $Mg_{(s)} + H_2O_{(g)} \rightarrow MgO_{(s)} + H_{2(g)} \checkmark 1mk$
 - c) Remove the delivery tube form the water trough before heating is stopped \checkmark 1mk to prevent sucking back \checkmark 1mk
- 5. a) Equilibrium shifts to the right \checkmark ½ mk where there are few molecules \checkmark ½ mk
 - b) It will have no effect \checkmark ½ mk because the number of molecules are equal on both sides \checkmark ½ mk
- 6. Heat the mixture, ammonium chloride sublimes √ ½ mk Add water to the remaining mixture, NaCl dissolves leaving silver chloride √ ½ mk Filter to obtain silver chloride as the residual and NaCl as the filtrate √ ½ mk Heat the filtrate to dryness to obtain solid NaCl √ ½ mk
- 7. i) $Ag^+_{(aq)} + e^- \longrightarrow Ag_{(s)}$

= 0.03 x 2 x 60 x 60
= 216C ✓ 1mk
96500C → 108g
216C → ?

$$\frac{216 \times 108}{96500}$$
 ✓ 1 mk
= 0.242g ✓ ½ mk

8.

á)

- 9. a) Curve I \checkmark 1 mk the concentration of F increases with time since F is the product \checkmark 1 mk
 - b) After time (t) the concentration of E and F remains constant because equilibrium has been established ✓1 mk
- 10. a) The chloric (I) acid decomposes to form atomic oxygen ✓1 mk the atomic oxygen attacks and bleaches the blue flower ✓1 mk
 - b) $2\text{HOCl}_{(aq)} \rightarrow O_{2(g)} + 2\text{HCl}_{(aq)} \checkmark 1\text{mk}$

11. Luminous non-luminous Sooty non-sooty _ Not very hot - very hot _ Not steady - steady (any 2) _ 12. $\text{KOH}_{(aq)} + \text{HNO}_{3(aq)} \rightarrow \text{KNO}_{3(aq)} + \text{H}_2\text{O}_{(l)} \checkmark \frac{1}{2} \text{mk}$ moles of $HNO_3 = \frac{2 \times 100}{1000} \checkmark \frac{1}{2} \text{ mk}$ = 0.2 moles $\checkmark \frac{1}{2}$ mk Mole ratio 1HNO₃: 1KOH \therefore Mole of KOH = 0.02 moles \checkmark $\frac{1}{2}$ mk Moles of KOH in 200cm³ $\frac{0.2 \times 200}{100} \checkmark \frac{1}{2} \text{ mk}$ = 0.4 moles $\sqrt{1/2}$ mk Mass y = $0.4 \times 56 \checkmark \frac{1}{2} \text{ mk}$

= 22.4g ✓ ½ mk

13. MgO has a giant ionic structure while SiO₄ has a grant covalent structure hence in molten state MgO conducts since it has mobile ions while SiO₄ does not

14. a) $X - 143 \checkmark \frac{1}{2} mk$

Y – 50 ✓ ½ mk

- b) Energy generations
 - Food preparation
 - Pest control
 - Carbon dating
 - (Any 2 each ½ mk)
- 15. a) Brown fumes are observed $\sqrt{\frac{1}{2}}$ mk
 - Black solid is deposited $\checkmark \frac{1}{2}$ mk
 - Blue colour fades ✓½ mk
 - b) $2NO_{2(g)} + H_2O_{(l)} \rightarrow HNO_{3(aq)} + HNO_{2(aq)}$
 - c) It relights a glowing splint
- 16. a) Soapless detergent
 - b) i) Does not form scum
 - ii) Causes pollution since it is non-biodegradable
- 17. a) The volume of a fixed mass of a gas is inversely proportional to its pressure at constant temperature
 √1mk. This is because particles of a gas are widely apart hence can be compressed ✓1mk
 - b) i) Low pressure ½ mk
 - ii) High temperature ½ mk

Specify

- 18. In diamond each carbon atom is covalently bonded to four other carbon atoms in a rigid giant atomic structure ✓ 1mk. In graphite each carbon atom is covalently bonded to their other carbon atoms in layers ½mk. The layers are held together by weak Vander walls forces which are easily broken ✓ ½mk
- 19. a) i) An element is a substance which cannot be split into any simpler substance by any chemical process
 - ii) Atomic number is the number of protons in an atom
 - b) $T_2(SO_4)_3$
- 20. a) Experiment $1 \checkmark \frac{1}{2}$ mk
 - Experiment 3 √½ mk
 - b) In experiment 1, solid potassium carbonate has no free ions to conduct electricity \checkmark 1mk

In experiment 3, sugar consists of molecules which do not conduct electricity \checkmark 1mk

- 21. a) Cotton / wool / silk \checkmark 1mk
 - b) Are strong than natural fibres
 - Not easily affected by chemicals
 - Last longer / are durable
 - Are cheaper

(Any 1)

- 22. a) X \checkmark ¹/₂ mk it has a completely filled outermost energy level \checkmark ¹/₂ mk
 - b) i) W and Y \checkmark 1mk
 - ii) YW √1mk
- 23. a) Copper pyrites ✓½ mk Malachite ✓½ mk
 - b) In order to concentrate the ore
 - c) Brass \checkmark 1mk used in soldering wires and ornaments \checkmark 1mk
- 24. a) G
 - b) The ionic radius of I is bigger than of E \checkmark 1mk since I has more energy level than E \checkmark 1mk
- 25. a) This is the energy change that takes place when one mole of a compound is formed from its constitute elements in their standard state
 - b) $\Delta H_4 = \Delta H_1 + \Delta H_2 + \Delta H_3$ = (-286 x 3) + (-394 x 2) - (-277) = - 1369 KJ/mol
- 26. a) Oxidation state is the apparent charge that atoms have in molecules / ions
 - b) $(2 \times 3) + 2N = 0$ 2N = -6N = -3
- c) The heat is required to break the strong triple covalent bonds between nitrogen atoms 27.

$$H = \frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} - \frac{1}{C} + \frac{1}{C} +$$

- 28. The product form the nettle plant is acidic ✓1mk hence aqueous ammonia solution being basic neutralizes the acidic product. ✓1mk
- 29. Ionization energy is the energy required to remove an electron form an atom in gaseous state ✓ 1mk while electron affinity is the energy released when an in gaseous state gains an electron.
- 30. Burning Magnesium produce heat energy enough to break the sulphur / oxygen bond setting oxygen free. Magnesium uses the free oxygen to continue burning.