SCHOOL BASED FORM FOUR EXAMINATION JULY/AUGUST 2017 Chemistry Paper 2 Marking scheme

1.a)i	Halogens		
ii)	lonic radius increases from D to I this is due to increase in number of energy.		
iii)	Reactivity reduces from D to I due to increase in atomic radius down the group which leads to a decrease in		
)	the strength of nuclear force of attraction.		
b) i)	287		
ii)	28		
n) c)i)	F = S = Sulphur		
())	Λ molecule of subbur is made of packed ring of 8 atoms joined by strong covale	nt honds while a molecule of	
	oxygen has weak van der wall forces hence higher B.P of sulphur than oxygen.	in bonds while a molecule of	
111) ·	$S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$,	
1V	Below 7 because SO ₂ dissolves in water to form acidic solution of sulphurous acid.		
21)	Heating		
11)	M – sodium carbonate/ potassium carbonate		
	S – oxygen		
	T – nitric (v) acid		
	V – nitric (III) acid		
iii)	$[CU(NH_3)_4]^{2^+}$		
iv) I)	$2\mathrm{CU}(\mathrm{NO}_3)_{2(\mathrm{s})} \rightarrow 2\mathrm{CUO}_{(\mathrm{s})} + 4\mathrm{NO}_{2(\mathrm{g})} + \mathrm{O}_2$		
II)	$NO_{2(g)} + H_2O(l) \rightarrow HNO_{2(aq)} + HNO_{3(aq)}$		
3.a) i)	Water		
ii)	Any pH between 4 - $7 - due$ to presence of carbonic acid		
iii)	$2Na_2O_{2(aq)} + 2H_2O_{(l)} \rightarrow 2NaOH_{(aq)} + O_{2(g)}$		
b)	Brown solution change to pale green solution. This is due to F^{3+} reduced to Fe^{2+} by H_2S		
c.i)	When CO ₂ is bubbled in lime water white precipitate is formed while NO ₂ white precipitate formed		
	with CO.		
ii)	Extraction of metals, used as fuel		
d)	CO_2 is highly soluble in sodium hydroxide to form Na_2CO_3 while is slightly soluble in water.		
4a)i)	Ethanoic acid		
ii)	Gas V – carbon (IV) oxide		
b) i)	hydrogenation		
ii)	halogenation		
c.i)	oxidation		
ii)	н н		
Q.	$H \longrightarrow C \longrightarrow H$		
	CL CL		
	I, 2 – dichloroethane		
	ні ні _п		
	Poly – ethene		
d)	$CH_2CH_2+CL_2 \rightarrow CH_2CLCH_2CL$		
, 5.a)			
i)	limestone		
ii)	hot air		
iii)	ore/ iron oxide		
iv)	coke/C	(2mks)	
b)	$C_{(c)} + CO_{2(c)} \rightarrow 2CO_{(c)}$	(1mk)	
c)	The reaction between coke/coal and the hot air is highly exothermic	(1mk)	
c) d)i)	Slag is immiscible with molten iron/insoluble	()	
ii)	Slag is less denser than molten iron	(2mks)	
 (ا(م	By passing/ blowing oxygen into molten iron which converts carbon into carbon	(IV) oxide	
ii)	To increase the tensile strength/ making iron less brittle more malleable more du	ictile (2mks)	
f)	It contains impurities eg carbon and manganese which lowers the malting point	(2mks)	
• <i>)</i>	it contains impartices en curson and manganese which towers the metulig politic	(-11113)	

- g) Construction of bridges/ ship/ buildings/car bodies, nails railway lines, pipes, spoons, pressure cookers, horse shoe magnet. $\sqrt{1/2}$ (2mks)
- 6.a) i) Wrong method of collection.√¹/₂ (3mks)
 ammonia is less denser than air.√¹/₂
 (ii) Flask should be slanting downwards left to right .√¹/₂
 Water produced may run back & break the flask .√¹/₂
 - Moist reactants should not be used $\sqrt{1/2}$
 - ammonia gas dissolves in water $\sqrt{1/2}$
- ii) Anhydrous calcium oxide
- iii) $2NH_4Cl_{(s)} + Ca(OH)_{2(s)} \rightarrow 2NH_{3(g)} + 2H_2O_{(1)} + CaCl_{2(s)}$
- (iv) Deep a glass rod in conc. HCl and bring it into contact with ammonia in a test tube. White fumes formed.
- b.i) Unit 1
- ii) X nitrogen (II) oxide (NO)
- Y nitrogen (IV) oxide (NO₂)
- iii) NH₃
- $\begin{array}{l} HNO_{3} \\ +1 + x + (-2 \times 3) = 0 \\ x = -3 \ \sqrt{1} \\ \end{array}$ $\begin{array}{l} +1 + x + (-2 \times 3) = 0 \\ +1 + (-6) + x = 0 \\ -5 + x = 0 \\ x = +5 \ \sqrt{1} \end{array}$

Nitrogen in NH₃ has an oxidation state of -3 while in HNO₃ has oxidation state of +5. Increase in oxidation state is oxidation. $\sqrt{1}$

iv) NH₄NO₃

N = 28		
H = 4		
O = <u>48</u>	<u>28 </u> x 100	
80	80	= 35.0%
I – 0.8M		

- 7a) I 0.8M III – 0.1M
- b)i) State of balance where forward reaction takes place at the same rate as reverse reaction.
- ii) Yellow colour intensifies

Addition of KOH favours forward reaction since conc. Of OH⁻ increases .: reaction proceeds in the forward direction to react the increased OH⁻

c) i) in <u>the table</u>

i) Graph Scale - 1 Plotting - all 2 ≤ 5 0 Curve 1 iii) $1_{15} = 0.67 \sec^{-1}$ value from the graph. $\sqrt{1}_2$