KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

MANG'U HIGH SCHOOL

232/1 PHYSICS PAPER 2

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor

Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27

E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

MANG'U HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016

Paper 2 (Theory)

SECTION A (25MARKS)

- 1 Using the domain theory, explain how strong heating causes demagnetization.(2mks)
- 2 You are provided with two identical cells. Two lamps and a switch.
 - i) Draw a circuit diagram that would ensure that the bulbs have maximum brightness. (2mks)
 - ii) State **one** disadvantage of using such an arrangement in (i) above to light a whole house with many bulbs. (1mk)
- 3 Calculate the operating current of a heating element rated 3KW,240 volts.(3mks)
- 4 What is local action and how is it minimized in a simple cell. (2mks)
- 5 The figure below shows an object O placed in front of a plane mirror.

Use a ray diagram to locate the position of the image.

(2mks)

6 In the circuit diagram in figure below, the voltmeter reads 4 volts.

Determine the ammeter reading.

(3mks)

7 The figure below shows an eye defect.

8

Name the defect and state how it can be corrected.

(2mks)

Kiss FM broadcasts at a frequency of 100 H_Z if the velocity of the radio waves is 3.0 x 10^8 m/s.Calculate the wavelength of radio waves. (2mks)

- 9 The refractive index of turpentine is 1.47, What is the refractive index of the air with respect to turpentine. (2mks)
- 10 State two factors that affect the strength of an electromagnet. (2mks)
- 11 A material of resistivity $1x10^{-2} \Omega$ m has a cross-section area of $2x10^{-2}$ mm² and length 2m, determine its resistance. (2mks)

SECTION B (55MARKS)

- 12 a) State two factors affecting resistance of a resistor. (2mks)
 - b) In an experiment to determine the internal resistance of a cell, the following results were obtained.

Volts V x 10 ⁻¹ V	14	10	8.4	6.0	4.2	2.0	1.0
Current 1 x 10 ⁻¹ A	1.2	6.0	8.0	10.8	13.0	15.6	16.8

- i) Plot the graph of voltage against current on the graph paper provided.
- ii) Use the graph to determine:
 - a) e.m.f of the cell. (2mks)
 - b) The internal resistance of the cell. (2mks)
 - c) The figure shows a set of resistance, determine the effective Resistance (3mks)

- a) Give a reason why a candle flame is blown away when a highly charged rod is brought close to it. (2mks)
 - b) State one use of a gold leaf electroscope.
 - c) Sketch the electric field pattern around the following point charges.(1mks)
 - d) Give a reason why it is not advisable to take shelter under a tree especially when it is raining. (1mk)
 - e) An earthed metal P is placed directly above the plate of a charged electroscope as shown.

State and explain what is observed when:

i) P is slid slowly sideways.

(2mks)

(1mk)

- ii) P remains fixed in its position but a slab of paraffin was is slid slowly between the plates. (2mks)
- a) A small object O is placed 30cm away from diverging lens of focal length 10cm. Determine by scale drawing the position and nature of the image on the grid provided. (3mks)
 - b) The diagram below shows a glass prism and incident ray striking the surface XY.

- i) Indicate on the diagram the path of the emergent ray. (2mks
- ii) Calculate the refractive index of the glass prism given that the critical angle of glass is 42⁰ (3mks)
- c) A concave lens of focal length 15cm forms an image 8cm from the lens. Calculate the object position from the lens. (3mks)

- 15 The screen of a cathode ray oscilloscope displays the trace shown in the figure belowThe ray y sensitivity is set at 10v/cm and the base set at 0.2ms/cm.Obtain values for:
 - a) The peak voltage. (1mk)

- b) The frequency of the alternating signal. (2mks)
- c) State two reasons why a c.R -O is advantageous to use as a voltage over ordinary meters (2mks)
- d) List two uses of the graphite used in the T.V set. (2mks)
- 16 a) The diagram below shows part of X rays tube.

Name parts:

- b) i) What is the effect on the wavelength of X rays if the number of electrons hitting metal target are increased. (1mk)
 - ii) What is the effect on wavelength of X –rays when pd across the tube is decreased. (1mk)
- c) Calculate the maximum velocity of electrons that would produce x-rays of frequency $8.0x10^8$ H_Z if only 20% of kinetic energy is converted to x rays.(Take planks constant = 6.63 x 10^{-34} JS and mass of electron = 9.1×10^{-31} kg).

(3mks)

- d) An x-ray tube operating at a potential difference of 50KV has a tube current 20mA.Calculate.
 - i) The electric power input.

(2mks)

- ii) The number of electrons hitting the target per second given that $e = 1.6 \times 10^{-19}$. (2mks)
- iii) The velocity of electrons when they hit the target. (3mks)