KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

ALLIANCE BOYS HIGH SCHOOL

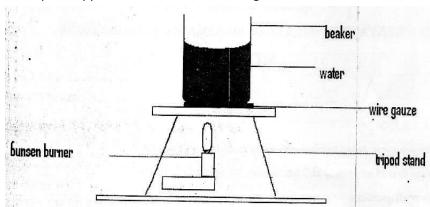
232/1
PHYSICS
PAPER 3
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27

E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

ALLIANCE BOYS HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016


Paper 3
MARKING SCHEME

QUESTION ONE

You are provided with the following;

- A 40ml glass beaker
- A Bunsen burner
- A thermometer
- A stop watch
- A tripod stand and a measuring cylinder 100ml
- A wire gauze
- A source of heat

Set up the apparatus as shown in the diagram below.

Measure 100cm³ of water and pour it into the beaker. Take the initial temperature of the water.

To **27**°**C** (1 mark)

Now heat the water to a temperate of 90° C. switch off the gas tap and place a thermometer into the beaker and start the stop watch when the temperature is 650C. Take the temperature T° C of water every two minutes.

Record your results in the table below.

Time (t)	2	4	6	8	10	12	14
(min)							
Temperature (T) ⁰ C	60	57	54	52	50	48	47
$(T - T_0)^0$	33	30	27	25	23	21	20
Log (T – T _o)	1.5185	1.4771	1.4314	1.3979	1.3617	1.3222	1.3010

(ii) Find the value K of log $(T - T_0)$ when t = 0

K = 1.56 shown the graph

Determine the antilog of K.

(2 marks)

Antilog K = 36.31

Calculate the temperature of the surrounding TR using the expression Antilog $K = 65 - T_R$ (iii) (3 marks)

$$36.31 = 65 - TR$$

$$TR = 65 - 36.31$$

$$TR = 28.69^{\circ}C$$

QUESITON TWO

This question has two parts A and B. answer both parts PART A

You are provided with the following:

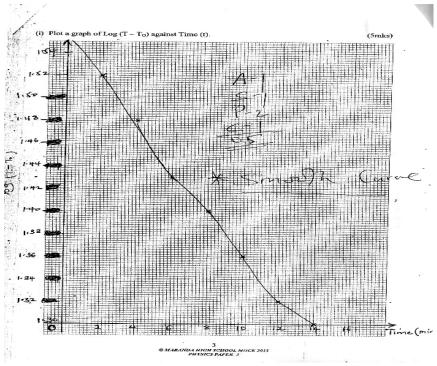
- A meter rule
- Two identical 100g masses
- About 200ml of liquid L in 250ml beaker
- Three pieces of thread, each about half metre long
- Stand with clamps
- Tissue paper

Proceed as follows:

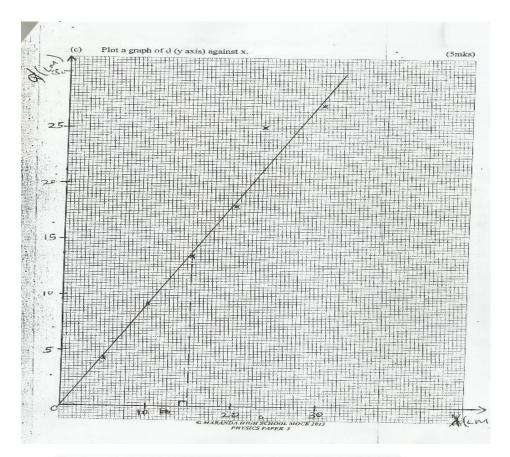
(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally.

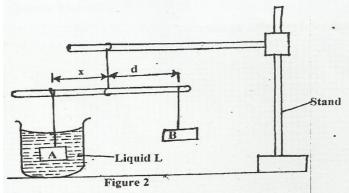
Record the position of the centre of gravity. G.

G = **500** mm


NOTE: The metre rule should remain suspended at this point through out the experiment.

(b) Set up the apparatus as in figure 2 below.(i)


Plot graph of Log (T – To) against


(2 marks)

Time (t) (5 marks)

(c) Plot a graph of d (y axis) against x. (5 marks)

Suspend the sums A at a distance x = 50mm. adjust the position of mass B until it balances mass A immersed in liquid

Record the distance d, of mass B from the pivot.

Repeat the same process for other values of x in table 2 below and complete the table.

x (mm)	50	100	150	200	250	300
	5	10	15	20	25	30
d (cm)	4.4	9.2	13.6	18.2	23.0	27.4

(h) Repeat procedure (b) above for the distance u = 40cm and record the new distance V. complete the table 3 below.

U (cm)	V (cm)	M =v/u	(m+1)
30	22.5	1.333	2.333
40	30.1	1.329	2.329

(2 marks)

(i) Given f = V, calculate the values of f hence determine the average value f_{av} : (3 marks)

(m+1)

$$f_2 = 30.1 = 12.924$$
cm

2.329

$$f = f1+f2 = 9.657 + 12.924$$

2

2

= 11.2905cm

(d) Determine the slope, S of the graph

(2 marks)

Gradient =
$$\underline{DY}$$
 = $\underline{14-0}$

= 0.9333

(e) Given $S = \underline{F}$, where F is the apparent weight of objects A in the liquid L and W is W the actual weight of A, find: -

(i) The value of F.

(2 marks)

1

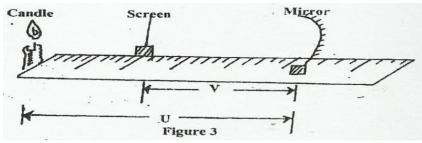
F = 0.9333N

(ii) The up thrust, U

(3 marks)

$$U = 1 - 0.9333$$
 $U = W - F$

U = 0.0667N


PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follows:

(f) Set p the apparatus as in figure 3 below.

(g) Put the object at a distance u = 30cm from the mirror. Adjust the position of the screen until a sharp image is formed