KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

ALLIANCE BOYS HIGH SCHOOL

232/1 PHYSICS PAPER 1 MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27

E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

ALLIANCE BOYS HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016

PAPER 1

MARKING SCHEME

SECTION A (25 MARKS)

1. a)
$$(4.5 + 0.21) - 0.11 \text{ mm}$$

b)

D =
$$\frac{m}{v}$$

= $\frac{0.0024}{4 \cdot 3x^{\frac{22}{7}x} \cdot 2.3 \cdot x \cdot 10^{-3}} \checkmark$
= 47, 091.13 kg m^3
= 47100 kg/m³ (3 s.f) \checkmark

2.

Correct thread curving √1

Surface tension is broken in region B and surface tension on side Aand C Pulls the thread. $\checkmark 1$

3. Water rises up the glass tube. ✓

Hydrogen diffuses out the porous pot faster than air diffusing into the potcreating ✓ partial vacuum (low pressure) hence atmospheric pressure pushes water upwards.

4.

A shows higher temp reading. ✓

Black is a good absorber ✓ of heat while silver reflects the heat away.

5.

The COG is raised.✓

This makes bus unstable ✓ (likely to topple).

6. a)

 Σ ACM = Σ cm

$$30 \times 20 = 30 \times F \checkmark$$

$$F = \frac{600}{30} = 20N$$

Magnetic force = 20-5

b) South√

7. (a) It has low density ✓ hence along column of water is supported by atmospheric

pressure.

(b) The maximum height the can be raised is 10m since the pump ✓ operates due to atmospheric pressure.

8.
$$E_{A} = E_{B} = E_{C} = \frac{12}{3} x \frac{12}{12} = 1.67 cm$$

$$e_{D} = e - \frac{12}{2} x \frac{5}{12} = 2.5 cm \checkmark$$
Accept combined spring

constant method

9. Mass flux =
$$3.142 \times 10^{-4} \times 5 \times 1040 \checkmark$$

= $1.634 \text{ kg/s}\checkmark$

11.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$T_2 = \frac{85 \times 460 \times 288}{76 \times 500}$$

= 296.3K

SECTION B (55 MARKS)

- 12. a) (i) Ratio of effort distance to effort distance √1
 - (ii) Correct diagram with 3 pulleys blocked up and two down √1Correct threading.√1

(iiiSome energy are used to lift weight of machine parts ✓1

Energy used to overcome friction ✓1

(b)

(i)
$$V/R = \frac{R^2}{V^T} = \frac{14^2}{2.8^2} \checkmark$$

= 25 \sqrt{

(ii)
$$n = \frac{MA}{V.R} \times 100\%$$

M.A = 25 x $\frac{80}{100}$ ✓

(iii) Effort =
$$\frac{load}{\frac{M.A}{20}}$$
 = $\frac{1200}{20}$ ✓

13. (a)

(i) Up motion
$$h_1 = 40t - 5t^2 \checkmark 1$$
Down motion $h_2 = 5t^2$
But $h_1 + h_2 = 100m$
 $100 = 5t^2 + -5t^2 + 40t\checkmark 1$
 $t = \frac{100}{40} = 2.5 \text{ seconds } \checkmark 1$

(ii)
$$hi = 40t - 5t^{2}$$
$$= (40 \times 2.2) - 5 (2.5)^{2} \checkmark 1$$
$$= 100 - 31.25$$

= 68.75m√1 from the ground

(i)
$$W = 2\pi f$$

= $2 \times \frac{22}{7} \times 6 \checkmark$
= 37.7 radis \checkmark

=
$$0.6 \times (37.7^2) \checkmark$$

= $853.42 \text{ radis} \checkmark$
(iii) F = ma
= $0.045 \times 853.42 \checkmark$
= $38.4 \text{ N} \checkmark$
(iv) v = rw
= 0.6×37.7
= $22.62 \text{ m/s} \checkmark$

A body partially or totally immersed in fluid experiences an upthrust equal ✓ to the 14. a) weight of the fluid displaced.

(b)

(ii)

(i) Volume displaced =
$$4 \times 1.5 \times 1.2$$

= $7.2 \text{ m}^3 \checkmark$
Weight displaced = $7.2 \times 1100 \times 10 \checkmark 1$
= $79,200 \text{ N} \checkmark$
Upthurst = $79,200 \checkmark 1$

(iii)
$$T = U - W$$

= 79,200 - (4000 x 10) \checkmark 1
= 39 200 N \checkmark

(c)

(c) Upthrust = weight of solid
$$(4 \times 10^{-4} \times 5 \times 10^{-2}) \times 1000 \times 10 = \frac{m}{1000} \times 10 + \frac{10}{1000} \times 10 \checkmark$$
(ii)
$$m = 10g\checkmark$$

$$0.2 = (4 \times 10^{-4} \times x) \times 750 \times 10 \checkmark 1$$

$$x = 0.0667m$$

$$= 6.67cm \checkmark 1$$

15. (a)

	Evapouration	Boiling
1.	Takes place at all temp.	Takes place at fixed temp.
2.	At the surface of the liquid	Through the liquid
3.	Increases with decrease in pressure	Decreased with decreases in pressure

Any two correct pair ✓ ✓

(b)

(i)
$$80^{\circ} \text{c} \checkmark 1$$

(ii)
$$p x t = 1000 x 5 x 60 \checkmark 1$$

= 300,000J ✓

(iii) Pt =
$$mc\theta$$

$$300,000 = \frac{1200}{1000} xcx (80 - 10) \checkmark$$

$$c = 3571.43 \text{ J/kg/k} \checkmark 1$$

(iv)
$$Pt = mLv$$

$$1000 \times 3 \times 60 = \frac{50}{1000} \times Lv \checkmark$$

Lv =
$$3.6 \times 10^6 \text{ J/kg/k} \checkmark 1$$

16. (a) (i)A body continues in its state of ret or uniform motion in a straight line unless acted upon by an external force. ✓ 1

ii) Ft = m (v-u)

$$75 \times 0.1 = \frac{25}{1000} \quad v - 0 \checkmark 1$$

V = 30 m/s $\checkmark 1$

(b) (i)
$$M_1V_1 + M_2V_2 = (M_1V_2)v$$

$$V = \frac{20}{1000}x \frac{400}{\frac{20}{1000} + 3.5} \checkmark$$

$$= 2.27 \text{ m/s} \checkmark$$
(ii) $a = \frac{F}{m} = \frac{4}{0.02 + 3.5}$

= -1.136 m/s²
$$\checkmark$$

 $v^2 = v^2 + 2as$
 $0 = (2.27)^2 - (2 \times 1.136s) \checkmark 1$
 $s = 2.268 \text{ m } \checkmark 1$
(c) P total = $s_1gh_1 + s_2gh_2 + Pa$
= $(1000 \times 10 \times \frac{2}{100}) + (800 \times 10 \times \frac{4}{100}) + (\frac{760}{1000} \times 10 \times 13600) \checkmark$
= $200 + 320 + 103 360 \checkmark 1$
= $103 880 \text{ pa} \checkmark 1$