KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

KAPSABET BOYS HIGH SCHOOL
CHEMISTRY
PAPER 1
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

KAPSABET BOYS KCSE TRIAL AND PRACTICE EXAM 2016 QUESTION PAPER 1

MARKING SCHEME

NO		MS
1	Both ammonia and Calcium hydroxide solutions	33
	(a) React acids//dilute acids // HCl _(aq) // any specific acid named to	
	form salt and	
	water only	
	(b) Have pH value above 7	
	(c) Turn red litmus to blue	
	(d) Turn phenolphthalein indicator from colourless to pink	
	(e) Turn methyl orange to pink (any 3 1mk each)	
2	Add separate small portion of each to boiling tubes containing hydrogen peroxide	3
	MnO_2 – effervescence occurs, CuO no effervescence	
	// Add separate small portions to H ₂ SO _{4(aq)} CuO blue solution forms, MnO ₂ Colourless	
	solution	
	// Add HCl _(aq) MnO ₂ effervescence//green yellow gas// colourless solution.	
	CuO – no effervescence//green/blue solution	
	//Add $HNO_{3(aq)}$ 1mk for reagent 1mk for each obs.	
3	$2Mg_{(s)} + O_{2(g)} \rightarrow 2MgO_{(s)}$	3
	$6Mg_{(s)} + 2N_{2(g)} \rightarrow Mg_3N_{2(s)}$	
	$2Mg_{(s)} + CO_{2(g)} \rightarrow 2MgO_{(s)} + C_{(s)}$	
	$Mg_{(s)} + H_2O_{(g)} \rightarrow MgO_{(s)} + H_{2(g)}$	
	(any three 1mk each balanced with correct s.s. penalize ½ for missing // wrong	
	S.S	
4	(a) F – pale blue zone	3
	G – almost colourless zone	
	H – chimney (½mk each)	
	(b) Slip a piece of manila paper /wooden splint into region and quickly remove before	
	it catches fire. The inner part remains unburnt// not charred (1½mks)	
	(c) //Hold a match stick on a pin and let the head rest on the chimney when the	
	chimney is lit the head of the match stick in the zone does not light.	
5	(a) Simple distillation	2
	(b) Drying	
	(c) Filtration	
	(d) Diffusion (½mk each)	
6	(a) Anion is a negative charged ion	3
	(b) Atomic number is the number of protons in an atom of the element	
	(c) Isotopes are different atoms of the same element with same atomic number but	
	different mass number . (1mk each)	
7	(a) (i) $Zn_{(s)} + HNO_{3(aq)}$ - HNO ₃ is oxidizing agent, H ₂ O immediately.	3
	(ii) $Pb_{(s)} + HCl_{(aq)}$ - $PbCl_2$ formed is insoluble, prevents further reaction.	
	(iii) $K_{(s)} + H_2SO_{4(aq)}$ - Reaction of $K(s)$ with $H_2SO_{4(aq)}$ is explosive (½mk each)	
	(b) Q is water (1mk)	
8	(a) Prevent water formed to run back to hot part which could crack	3
-	(b) Blue solid turns white //crystals form powder //colourless drops of liquid on cooler	
	parts	
	(c) G is water	

	TO ₃ RMMO ₃	
	$TNO_2 = 120 \frac{56}{} = 129.6 sec (3 mks)$	
	48	_
18	(a) A double salt is a compound containing two different anions or cations (1mk)	3
	(b) (i) Trona	
	Na_2CO_3 . $NaHCO_{3(s)} + 3HCI_{(aq)} \rightarrow NaCI_{(aq)} + 2CO_{2(g)} + 2H_2O_{(l)}$ (1mk)	
	/::\	
10	(ii) MgCO ₃ .Mg(OH) _{2(s)} + 4HCl \rightarrow 2MgCl _{2(aq)} + CO _{2(g)} + 3H ₂ O _(l)	3
19	(a) (i) Increase in temeprature lower the production of HI(g) (½ mk) Reaction is endothermic (½ mk)	3
	(ii) Decrease pressure had no effect on production HI(g); (½ mk) No. of moles of	
	gases on	
	both sides equal (½ mk)	
	(b) ΔH_f or HI = ± 52.4 KJ	
	2	
	= +26.2KJ per mole (1mk)	
20	Empirical mass = 278 = R.F.M	3
	Fe O S H ₂ O	
	<u>20.2</u> <u>23.0</u> <u>11.5</u> <u>45.3</u>	
	56 16 32 18	
	0.36 1.44 0.36 2.52	
	1 4 1 7	
24	E.F = $FeSO_4$. $7H_2O$ Hence formula $FeSO_4$ 7 H_2O (3mks)	2
21	(a) Two elements O ₂ and Cl ₂ in chlorine water (½mk each)	3
	(b) Compounds in chlorine water HCl, HOCl, H₂O ½ mk each for two	
	(c) – belaching agent - oxidizing agent - acidic reactions (any two – ½mk	
	each)	
22	Mles of $ZnCO_3 = 17 = 0.1356$	3
	125.4	
	Moles of $HNO_3 = 50 \times 4 = 0.2$ moles	
	1000	
	1mole ZnCO ₃ = 2moles HNO ₃	
	0.1moles ZnCO₃ react	
	0.0356 moles of ZnCO₃ excess	
	Mass $ZnCO_3 = 0.0356 \times 65.4 = 2.328g$ (3mks)	
23	(a) Addition reaction (1mk)	2
24	(b) $C_4H_8 + Br_{2(g)} \rightarrow C_4H_8Br_{2(l)}$ (1mk)	2
24	(a) HCl solution in water forms ions which conduct electricity. (1mk)(b) HCl solution inpropanone does not form ions// is molecular (1mk)	
25		3
	²³³ Fr → Pa + e (1mk0	
	Chemical Nuclear	
	Valency Nucleus	
	Little energy A lot of energy	
	Now new element New element	
	Depends on Does not depend on temperature//pressure (any two	
	temperature//pressure (2mks)	
26	$V_1P_1 = V_2P_2$, $T_2 = 373K$ B.p of water	
	$\frac{\sqrt{11}}{1} = \frac{\sqrt{21}}{2}$, $\frac{\sqrt{2}}{12} = 373$ k B.p of water T_1 T_2	

	$\frac{760}{298} = \frac{P_2}{373 \times 760}$ $P_2 = \frac{373 \times 760}{298} = 951.3 \text{mmHg} (3 \text{mks})$	
27	(a) 2.4 (1mk) (b) $ \begin{array}{c} X \\ X \\ X \\ X \end{array} $	
28	(a) Yellow solid formed (1mk) (b) Cl_2 $MnO_{2(s)} + 4HCl_{(aq)} \rightarrow MnCl_2 + Cl_2 + 2H_2O_{(I)}//KMnO_{4(s)}$ (1mk) $FeS_{(s)} + 2HCl_{(aq)} \rightarrow FeCl_{2(aq)} + H_2S_{(g)}$ (1mk)	3