# KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

ALLIANCE GIRLS HIGH SCHOOL
CHEMISTRY
PAPER 1
MARKING SCHEME

### **SCHOOLS NET KENYA**

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

## **ALLIANCE GIRLS HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016**

### **QUESTION PAPER 1**

#### **MARKING SCHEME**

- 1. Add water to the mixture. Water <u>mixes with ethanol</u> and forms the lower layer while the upper layer is pentane. Use <u>separating funnel</u>  $\lor 1/2$  to separate pentane and use <u>fractional distillation</u>  $\lor 1/2$  to obtain ethanol from water.  $\lor 1/2$  (2mks)
- 2. (i) white fumes √
  - (ii) Phosphorus (V) chlorite //Phosphorous (III) chloride
- - (b) (i) Propyl ethanoate √1
    - (ii) 3-Bromo-2-methylpent-1-ene √1
- 4. Gas **P** Hydrogen √½

Solid R − Magnesium oxide V

Solid **T** − Copper metal  $\sqrt{1/2}$ 

Liquid S − water 1/2

(total 2mks)

- 5. (i)  $4NH_{3(g)} + 5O_{2(g)} \xrightarrow{Pt/Ni} 4NO_{(g)} + 6H_2O_{(l)}$  (penalize ½mk for wrong or missing state symbol)
  - (ii) Provide activation energy for the reaction V1mk

(iii) 
$$\left[ Zn(NH_3)_4 \right]^2$$
  $\sqrt{1}ml$ 

6. Mass of saturated soln. = (192 - 23)

Mass of solid = (142 - 23)

Mass of solution (water) = (169 -119)g

= 
$$50g \sqrt{2mks}$$

If 50g of water = 119g of solid

100g of water = 
$$(119 \times 100)$$
  $\sqrt{2}$ 

 $= 238g \text{ of sugar}/100g \text{ of water} \quad \sqrt{2}$ 

- (i) Gas electrode for gas U − Anode √½
   Electrode for gas V − Cathode √½ (1mk)
  - (ii) Gas **U** − oxygen √½ Gas **V** − Hydrogen √½ (1mk)

- (iii)  $4OH_{(aq)}^{-}$   $\longrightarrow$   $2H_2O_{(I)} + O_{2(g)} + 4e^{-}$  (penalize ½mk for wrong or missing state symbols)
- 9. (a) 54g of Al react with 7200cm<sup>3</sup>  $3g = ? \sqrt{2}$

$$= \frac{3 \times 7200}{54}$$
 = 4000cm<sup>3</sup>  $\sqrt{2}$  (1½mks)

(b) 54g produce 267g of AlCl<sub>3</sub> √½

$$3g = \frac{3 \times 267}{54}$$
  
= 14.83g  $\sqrt{\frac{1}{2}}$  (1½mks)

- 10. Protons -30 V1Neutrons = 65-30 = 35 V1
- 11. Add excess Zinc powder to Nitric (V) acid

12.

- 13. (a) Insoluble Lead (II) chloride formed coats Lead (II) Carbonate preventing further reaction.
  - (b) Hydrogen chloride ionizes in water to form acidic solution (H<sup>+</sup>ions) while it remains in molecular form in carbon tetra chloride.
- 14. (a) Atomic No. of A 23 12 = 11A = 2.8.1 V B = 2.1 V1 (2mks)
  - (b) **B**V1, Its outermost electronV1 experience stronger nuclear attraction / **B** has smaller atomic radius/ has fewer energy levels.
- 15. (a) B V1– Reaction faster, acid more concentrated. V1(2mks)
  - (b) The rate of reaction is  $\underline{faster}$  Vat the beginning due to high concentration of the reactants. (1mk)
- 16. If  $1000 \text{cm}^3$  of  $HNO^3 = 2 \text{moles}$

50cm<sup>3</sup> of HNO<sup>3</sup> = (
$$\underline{2} \times 50$$
)  
1000 = 0.1moles  $\sqrt{2}$   
1:1  
0.1: 0.1  
If 50cm<sup>3</sup> of KOH = 0.1mole  $\sqrt{2}$   
100cm<sup>3</sup> of KHO = ( $\underline{0.1} \times 100$ )  $\sqrt{2}$   
50  
= 0.2moles  $\sqrt{2}$   
 $\underline{D} = 0.2$   
56  
D = (0.2 x 56)  $\sqrt{2} = 11.2$ g  $\sqrt{2}$ 

17. (a) <u>Coat</u> or <u>cover</u> V1the metal surfaces to avoid contact of air and water with the metal(1mk)

(b) Zinc is **more reactive** than iron hence reacts with an oxygen available **V1**mk (*sacrificial method*)

(3mks)

- 18. Increase pressure √1
  - Lower the temperature √1 (2mks)
- 19. **K** and **M**

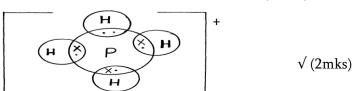
K and M − Aluminium hydroxide is amphoteric (reacts with both acids and bases) V1mk)

```
20.
                                 t = (32 \times 60 + 10)
        Q = 1t
                                                  V1/2
          = 0.5 \times 1930
                                 = 1930
           = 965C
                                 V½
        If 0.44g = 965C
        88g = 965 \times 88
             0.44
                                 √1/2
            = 193000C
                                 √1/2
        1mole of e- = 96500
        <u>193000</u> = 193000
         96500 √½
            = 2moles of e^{-}(Q^{2+})
          Charge = +2
                                  V½
```

- 21. - Arch welding V1
  - Bulbs to prevent oxidation of the filament √1 (2mks)

22. 
$$\frac{24 \times 82.8 + 25 \times 8.1 + 26 \times 9.1}{100}$$

$$= \frac{1987.2 + 202.5 + 236.6}{100}$$

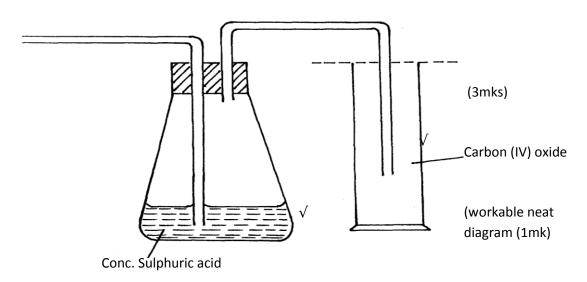

$$= \frac{2426.3}{100}$$

$$= 24.263$$
 $100$ 

- 23. (a) Filtration √1–NaHCO<sub>3</sub> residue and NH<sub>4</sub>Cl as filtrate
  - (b) Decomposition of NaHCO<sub>3</sub>
  - (c) Slaking-mixture of Ammonium is heated to give CaCl<sub>2</sub>, water and Ammonia//  $NH_4CI + Ca(OH)_2$
- 24. - Monoclinic (β) prismatic
  - Rhombic (α), octahedral
- 25. - Add ethen V1 to the mixture and stir B dissolves
  - Filter √½to obtain A and C as a residue
  - Add alcohol 11/2 to the residue C dissolves
  - Filter 11/2 and evaporate 11/2 the filtrate to dryness. (3mks)

26. 
$$\frac{TQ}{TO_2} = \frac{MQ}{MO_2}$$
  $TQ = 12.6 \text{sec}$   $TO_2 = 22.4 \text{sec}$   $\sqrt{\frac{1}{2}}$   $MO_2 = 2 \times 16 = 32$   $\frac{12.6}{10.125002^{1.4}} = \frac{MQ}{32}$   $\sqrt{\frac{10.125002^{1.4}}{32}} = 10.13 \quad \sqrt{\frac{10.125002^{1.4}}{32}} =$ 

Let an e of H = x




- 28. (a) Polyphenylethene or polystyrene (V1mk)

| Elements       | С                       | Н                      | 0                         |
|----------------|-------------------------|------------------------|---------------------------|
| % mass         | 26.7 √½                 | 2.2                    | 71.1 √½                   |
| No. of moles   | $^{26.7}/_{12} = 2.225$ | $\frac{22.2}{1} = 2.1$ | $^{71.1}/_{16} = 4.44375$ |
| Ratio of moles | $^{2.225}/_{2.2} = 1$   | $\frac{2.2}{2.2} = 1$  | $^{4.44375}/_{2.2} = 2$   |
| No. of atoms   | 1                       | 1                      | 2 V½                      |
|                |                         |                        | (2mks)                    |

Empirical formula CHO₂ √½

30.

