KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

NAIROBI SCHOOL
CHEMISTRY
PAPER 2
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

NAIROBI SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016

QUESTION PAPER 2

MARKING SCHEME

- 1. (i) A $\sqrt{1}$ mk gain 2e and attain its stability $\sqrt{1}$ mk
 - (ii) Giant ionic structure C_2O_2 is an ionic cpd. Has a very strong force of attraction (electrostatic force) between the ions.
 - (iii) E is more reactive than H this is because group (vii) elements/Halogens react by gaining and ∴ the smaller the atom the more reactive it is.

(iv)

$$B_{(s)}$$
 + $Cl_{2(g)}$ \rightarrow $BCl_{2(s)} \sqrt{1mk}$

No. of moles of Cl2 = 1.21 = 0.054 moles $\sqrt{1}$ mk and since mole ratio of B to Cl2 is 1:1 hence no. of moles of B is 0.054.

∴ 0.054moles = 1.3g

$$1 \times 1.3g = 24.07g \sqrt{1mk}$$

0.054

- (v) (a) G has smaller atomic radius than F. $\sqrt{2}$ mk this is because across the period, there is additional protons attracting the same no. of enough levels.
 - (b) The PH of B is above is 8.0 *** it is basic oxide while that of d is below 5.0
- 2. (a) (i) By passing A through a U tube filled with CaO $\sqrt{1}$ mk
 - (ii) dinitrogen tetraoxide √1mk
 - (iii) Brown solid seen √1mk
 - (iv) $2NH_{3(g)} + 3CUO_{(s)} \longrightarrow 3CU_{(s)} + 3H_2O_{(l)} + N_{2(g)}\sqrt{1}mk$
 - (v) Excess NH3 react with water to form ammonium hydroxide solution which is basic. $\sqrt{1}\text{mk}$
 - (b) (i) Ammonium chloride sublimed and collected in the cooler parts of the round-bottomed flask and the delivery tube $\sqrt{1}mk$
 - (ii) Ammonia salts liberates ammonia gas when heated with an alkali, not from its salt $\sqrt{1}$ mk
 - ullet So that the water, as it condenses does not run back into the hot flask and cracks it. $\sqrt{1}mk$
 - (iii) Ammonia combines with hydrogen chloride Or Ammonia being basic reacts with acidic gas to form a salt $NH_{3(g)} + HCl_{(g)} \longrightarrow NH_4 Cl_{(s)} \sqrt{1mk}$
 - (iv) Nitrogen and Hydrogen V ½mk
- 3. (a) (i) E+ $\sqrt{2}$ mk: higher electronegative $\sqrt{2}$ mk
 H2: higher electropositive $\sqrt{2}$ mk

(ii)
$$C(s) \rightarrow C2 + 2e - 0.34$$

 $g^{2+} 2e - \rightarrow D_{(s)} 0.44$
 $C_{(s)} D^{2+} \rightarrow C^{2+} + D(s) = 0.1V$

(iii)

Labeling V 1mk
Direction y e- V ½ mk
Electrodes V ½ mk
Electrolytes V ½ mk
Salt bridge V ½ mk

(b) (i) Electrode X $\sqrt{2}$ mk; reduction rxn took place; producing gas B $\sqrt{2}$ mk

= 1.544 moles √ ½mk

(ii) $4OH^{-}(aq) \rightarrow 2H_2O(I) + O_2(g) + 4e^{-}$

(iii) I- a = it =
$$0.03 \times 99 \times 60 = 178.2 \sqrt{2mk}$$

M = $\frac{RMM \times C}{e \times f} = \frac{92 \times 178.2}{e \times 96500} \sqrt{2mk} = 0.11$
e x f e x 96500
e = $\frac{92 \times 178.2}{e \times 96500} \sqrt{2mk}$
0.11 x 96500

4. (a)

- (b)
- (i) Conc of Br₂ after 3 minutes $5.3 \times 10^3 \times 10^3 \text{ mol/dm}^3 \pm -0.1$
- (ii) Change in concentration

Change in time

$$(9.6 - 5.0) \times 10^3$$

3 - 0

 $= 1.53 \times 10^3 \text{ mol/dm}^3$

- (c) At high concentration the rate of reaction is high because the particles the solution collide at a high frequency or more particles collide more often.
- (d) At a lower temperature the particles have less kinetic energy hence frequency of collision is reduced or few particles have activation energy.
- 5. (a) (i) a– Ethanol b– Ethanoic acid c- Mmethane

1 – bromoethane

d – Ethyl ethanoate

(ii) $X - C_2H_5Br$ or

(iii) Step 2

Reagents – Acidified potassium permanganate/acidified chromate (vii)

√ ½ mk

Condition: Catalyst – temp 37 – 40°C √ ½ mk/ warm

- (iv) CH3COOH (aq) + NaOH (aq) \rightarrow CH3COONa(aq) + H2O (I)
- (v) Polymerization
- (b) (i) D- Concentrated sulphuric (vi) acid √1mk
 L- Sodium hydroxide solution √1mk
 - (ii) Does not form scum √1mk
 - (iii) Non-biodegradable V1mk
- 6. (a) (i)

- (ii) Sodium peroxide √1mk
- (b) (i) $4P_{(s)} + 5O_2(g) \longrightarrow 2P_2O_{5(g)} \sqrt{1}mk$
 - (ii) Phosphorus (V) oxide dissolves in water to form an acid (Phosphoric acid) $\sqrt{\ }$ 1mk
- (c) A firm oxide (aluminium oxide) is formed on the surface of the metal. This oxide protect aluminium from further attack $\sqrt{1}$ mk
- (d) (i) A reaction which proceeds by production of heat i.e. heat is loss to the surroundings $\sqrt{1}mk$
 - (ii) The yield to be lowered: through by Le- Chateliers principle, the yield is expected to increase. But lower temperatures will result into fewer particles attaining activation energy. $\sqrt{1}$ mk
 - (iii) RMM of $SO_3 = 32 + 48 = 80$ Moles of SO_3 used = 350 = 4.38 moles Moles $H_2S_2O_7 = 4.38$ mol RMM $H_2S_2O_7 = 4.38$ mol RMM $H_2S_2O_7 = 2 + 64 + 112 = 178$

Mass =
$$H_2S_2O_7$$
 = 4.38 x 178 = 779.6 kg

- 7. (a) (i) Copper II oxide changes from black to brown √½mk
 It is oxide oxide to copper metal which is brown √½mk
 Clear liquid collects √½mk; oxygen so *** least at with Hydrogen to form water √½mk
 - (ii) $H_{2(g)} + CUO_{(s)} \longrightarrow CU_{(s)} H_2O_{(l)} \sqrt{1/2}mk$
 - (iii) Water √1mk
 - (iv) Using anhydrous copper (II) sulphate which changes to blue in present of liquid X or using blue cobalt chloride paper which changes to pink $\sqrt{1}$ mk
 - (b) (i) Magnesium is higher than hydrogen in the reactivity series hence cannot be displaced $\sqrt{1}mk$

- (ii) $2H_2(g) + O_2(g) \longrightarrow 2H_2O(I)$
- (c) (i) Large suspended particles e.g. leaves, stones, sand, gravel/grit
 - (ii) Sedimentation/precipitation $\sqrt{1}$ mk
 - (iii) (a) Permanent hardness $\sqrt{1}$ 1mk
 - (b) Addition of washing soda Na2CO₃ which precipitates $g^{2+}_{(aq)}$ as gCO_{3} (s) $\sqrt{1mk}$