KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

MOI GIRLS – ELDORET HIGH SCHOOL
CHEMISTRY
PAPER 2
MARKING SCHEME

SCHOOLS NET KENYA

Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: <u>www.schoolsnetkenya.com</u>

MOI GIRLS – ELDORET KCSE TRIAL AND PRACTICE EXAM 2016

QUESTION PAPER 2

- 1. (i) Noble gases $\sqrt{1}$
 - (ii) D2SO4 √1
 - (iii) (a) Y $\sqrt{1}$ (b) E $\sqrt{1}$
 - (iv) Ionic bond $\sqrt{1}$ Because B reacts by losing an electron (s) which are gained by H. $\sqrt{1}$
 - (v) D//M $\sqrt{1}$ Any one, one mark
 - (vi) Because E reacts by gaining an extra electron which reduces $\sqrt{1}$ the electrostatic pull by the positive nucleus making the ionic radius increase. wtte
 - (vii) At Period III Group IV
 - (viii) Because of the increase in the strength of the molecular bonds in the oxide of L as compared to that of G. $\sqrt{1}$ w.t.t.e
 - (ix) C has a smaller atomic $\sqrt{1}$ radius than I because of the increase in the strength of the nucleus on the valency electrons in C as the number of protons increase $\sqrt{1}$ w.t.t.e
 - (x) 1st ionization energies increases from J L across the period due to addition of an extra proton in the nucleus increasing the attraction of the valency electrons $\sqrt{1}$
- 2. (a) (i) Nitrogen $\sqrt{2}$ and hydrogen $\sqrt{2}$
 - (ii) Platinum $\sqrt{1}$
 - (iii) 4NH3(g) + 5O2(g) Platinum $4NO(g) + 6H2O(g) \sqrt{1}$
 - (iv) Neutralization $\sqrt{1}$
 - (v) The concentrated nitric acid oxidizes sulphur to sulphuric VI acid. The acid is reduced to nitrogen (IV) oxide $\sqrt{\bf 1}$

S(s) + 6HNO3(I)
$$\longrightarrow$$
 H2SO4(aq) + 6NO2(g) + 2H2O(I) $\sqrt{1}$

- (vi) Any metal above copper but below sodium in the reactivity series. $\sqrt{1}$
- (vii) (i) $J NH4NO3 \sqrt{1}$
 - (ii) Molar mass NH4NO3 = $28 + 4 + 48 = 80g \sqrt{\frac{1}{2}}$

Therefore 80g of NH4NO3 contain 28g of nitrogen

14g of nitrogen would be contained in $14/28 \times 80 \sqrt{}$

- = 40g of NH4NO3 $\,\sqrt{\,}$ (NH4)3 PO4 is less soluble $\,\sqrt{\,}$ hence it is less easily leached from the soil $\,\sqrt{\,}$
- (b) (NH4)3 PO4 is less soluble $\sqrt{}$ hence it is less easily leached from the so (NH4)3 PO4 provides the plant with nitrogen and phosphorous $\sqrt{}$ 1.
- 3. (a) (i) But-1-yne $\sqrt{1}$
 - (ii) But-2-ene $\sqrt{1}$
 - (b) (i) Q Ethylpropanoate $\sqrt{2}$ R Ethanol $\sqrt{2}$

W – Carbon (IV) oxide $\sqrt{2}$ each 2 mark

K – Hydrogen gas √½

As a fuel √1

(iii) 2CH3CH2 COOH(aq) + Na2CO3(aq) \rightarrow CH3CH2 COONa(aq) + H2O(I) + CO2(g) $\sqrt{1}$

Poly propene $\sqrt{1}$

- (v) Esters $\sqrt{1}$
- 4. (a) $M Oxygen \sqrt{\frac{1}{2}}$ $N - Hydrogen \sqrt{\frac{1}{2}}$
 - (b) $4OH-(aq) \longrightarrow 2H2O(I) + O2(g) + 4e \sqrt{1}$
 - (c) Cathode, $\sqrt{1}$ since H+ which has an oxidation number of +1 is reduced to H2 which has an oxidation number of O. $\sqrt{1}$
 - (d) Platinum $\sqrt{1}$ / graphite since they are inert and therefore do not react with the electrolyte or the products $\sqrt{1}$
 - (e) (i) Ba, Zn, Ag $\sqrt{1}$ Decreasing reactivity
 - (ii) E.M.F = E θ reduced E θ oxidized = -0.76 - -2.90 $\sqrt{1}$ = + 2.14V $\sqrt{1}$
 - (iii) The chlorine gas formed $\sqrt{1}$ would react with zinc anode. $\sqrt{1}$
- 5. (a) Carbon (IV) oxide formed is escaping $\sqrt{1}$
 - (b) CaCO3(s) + 2HCl(aq) \longrightarrow CaCl2(aq) + H2O(l) + CO2(g) $\sqrt{1}$
 - (c) Increasing the temperature $\sqrt{1}$
 - Increasing the concentration of hydrochloric acid $\sqrt{1}$
 - Using powdered calcium carbonate instead of marble chips

Any two, 2 marks

- (d) All the marble chips have been used up $\sqrt{1}$ // the reaction has come to an end.
- (e) White precipitate formed $\sqrt{1}$ which dissolves in ammonia solution $\sqrt{1}$
- (f) Causes global warming $\sqrt{1}$
 - Causes acid rain.
- (g) In fire extinguishers $\sqrt{1}$
 - In aerated drinks $\sqrt{1}$
 - Making artificial rain

Any two, 2 marks

- 6. (a) Enthalpy change when 1 mole of water is formed from the reaction between hydrogen and hydrogen ions $\sqrt{1}$ (a base and an acid)
 - (b) $H+(aq) + OH-(aq) \longrightarrow H2O(I) \sqrt{1}$
 - (c) (i) $\left(\frac{25.0 + 25.0}{2}\right) = \left(\frac{50}{2}\right)$ C = 250C $\sqrt{\frac{1}{2}}$

$$\Delta T = (34 - 25)0C$$

= 9.00C $\sqrt{\frac{1}{2}}$

(ii) $\Delta H = Mc \Delta T$ Total volume = (100 + 50)cm3 = 150cm3 Mass = 150cm3 x 1gcm-3

= 150g

$$\Delta H = 150 \text{ kg x 4.2 kJkg-1k-1 x 9k } \sqrt{1000}$$

$$= 5.67 \text{ kJ} \sqrt{}$$

(iii) The molar heat of neutralization of sodium hydroxide

If 1000cm3 = 2M =
$$\frac{50 \times 2}{1000} \times \frac{1}{1000} \times \frac{1}{10000} \times \frac{1}{1000} \times \frac{1}{10000} \times \frac{1}{1000} \times \frac{1}{10000} \times \frac{1}{10000} \times \frac{1}{10000} \times \frac{1}{10000} \times \frac{1}{10000} \times \frac{1}{10000}$$

If 5.67kj is liberated when 0.1 moles are neutralized then to neutralize 1 mole we have

$$\frac{1}{0.1}$$
 x 5.67kJ √
= 5.67 kJ mol √

(d) H+(aq) + OH-(aq)
$$\longrightarrow$$
 H2O(I) $\sqrt{\Delta}$ H neut = -56.7 kJmol-1

- 7. (a) (i) Molten aluminium oxide $\sqrt{1}$ (reject formula)
 - (ii) Aluminium metal $\sqrt{1}$
 - (iii) Anode √1
 - (b) Carbon $\sqrt{1}$
 - (c) (i) Al3+ + 3e- \rightarrow Al(s) $\sqrt{1}$
 - (ii) Oxygen gas evolved at E $\sqrt{1}$ reacts with the carbon electrode to form CO2(g). Hence it is consumed.
 - (iii) To lower the melting point $\sqrt{1}$ of Al2O3 so as to conserve energy
 - (d) Bauxite $\sqrt{1}$

(e) Al3++3e
$$\rightarrow$$
 Al $\sqrt{1}$ Q = It $\sqrt{\frac{1}{2}}$ 27 x 25 x 36 x 60 x 60 27g 1 mole \rightarrow 3F = 3 x 96500 $\sqrt{\frac{1}{2}}$ = 25 x 36 x 60 x 60 $=$ 0.3022kg $\sqrt{}$

- (f) Making cooking pans $\sqrt{}$
 - Making electric cables $\sqrt{}$
 - When alloyed its used in making body pans $\sqrt{}$ of air crafts (buralumium)
 - Making packaging foils e.g cigarette packs $\sqrt{\text{etc}}$

Any
$$2 \times 1 = 2$$