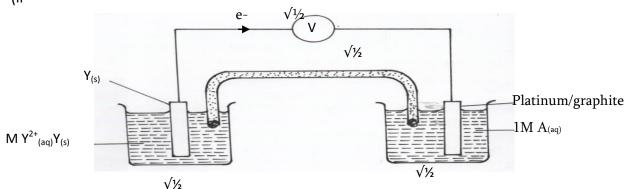
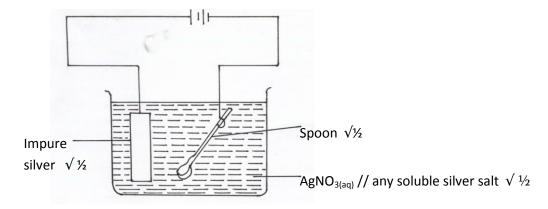
KENYA NATIONAL EXAMINATION COUNCIL REVISION MOCK EXAMS 2016 TOP NATIONAL SCHOOLS

MANG'U HIGH SCHOOL
CHEMISTRY
PAPER 2
MARKING SCHEME

SCHOOLS NET KENYA


Osiligi House, Opposite KCB, Ground Floor Off Magadi Road, Ongata Rongai | Tel: 0711 88 22 27 E-mail:infosnkenya@gmail.com | Website: www.schoolsnetkenya.com

MANG'U HIGH SCHOOL KCSE TRIAL AND PRACTICE EXAM 2016


QUESTION PAPER 2

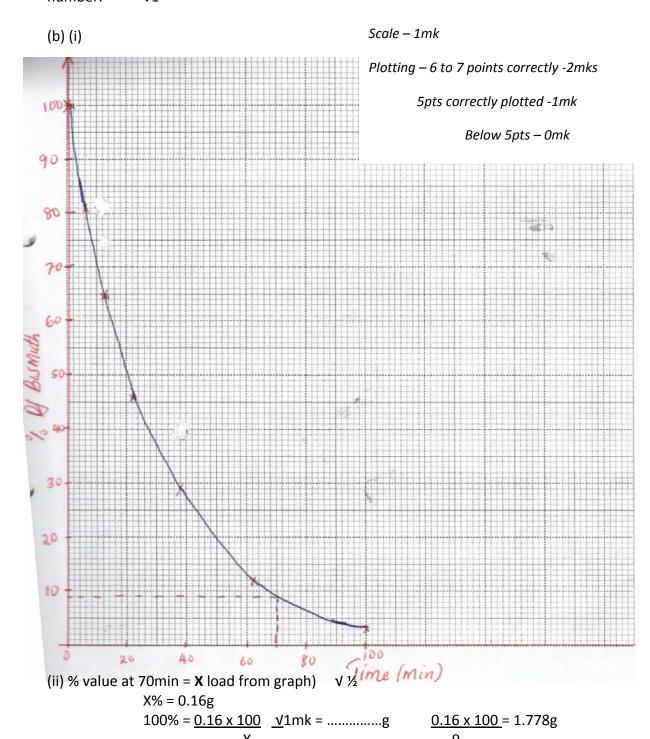
MARKING SCHEME

- 1. (a) (i) Group of compounds with similar chemical properties and chemical formula showing a steady gradual change in physical properties/
 - (ii) Alkanes √
 - (iii) C_5H_{12} or C_6H_{14} VBoiling points higher than room than temperature V
 - (iv) Boiling point increases with increase in molecular mass. Strength of intermolecular forces /vander waals forces increases with increase in molecular mass. V
 - (v) 3^{rd} member C_4H_8 . bubble . C_4H_8 and C_2H_6 separately into orange Bromine water. C_4H_8 decolourises bromine water but not C_2H_6
- 2. (a) (i) Z √ (ii

(iii) correct workable diagram $\sqrt{\frac{1}{2}}$

- (b) (i) Mg²⁺, SO₄²⁻, H⁺ and OH⁻ (1mk for all 4 correct)
 - (ii) Cathode: $4H^{+}_{(aq)} + 4e \rightarrow 2H_{2(g)}$ Accept $2H^{+}_{(aq)} + 2^{e-}H_{2(g)}$

(½mk for wrong of missing state symbols)


Anode: $4OH_{(aq)} \rightarrow 2H_2O_{(l)} + O_{2(g)} + 4e^{-1}$

(c) pH of electrolyte remains unchanged. V1 Equal amounts of H⁺ and OH⁻ ions are removed during electrolysis V1

(d) $4OH_{(aq)}^{-} \rightarrow 2H_2O_{(l)} + O_{2(g)} + 4e-25dm^3$ liberated by 4 x 96500C V ½

 1.2dm^3 will be liberated by 4 x 96500 x 1.2 $\sqrt{2}$

- 3. (a) Extraction of copper √ 1mk
 - (b) To provide a large surface area V1
 - (c) Froth floatation √
 - I water sinks earthly impurities and float the ore $\sqrt{1}$ II. covers the and sinks earthly impurities
 - (e) $FeO_{(s)} + SiO_{2(s)}$ (f) $Cu^{2+} \sqrt{1}$ \rightarrow FeSiO_{3(s)} ٧1
- (a) Time taken for a given mass or number of nuclides to decay to half its original mass or 4. number. ٧1

{9g ±1)

$$(0.16 \times 100 = 1.778g)$$

(c) Fission – splitting of heavy nuclides when bombarded by fast moving neutron. Fusion – combining of light nuclei when they collide at high velocity.

(d)

(e) (i) Medicine – Monitoring growth in bones and healing fractures.

Treatment of cancer/sterilization of surgical equipment /regulation of heart pace setters/detection of uptake of iodine-131-in kidneys.

- (ii) Industry (1mk)
- Detecting leakages in underground pipes
- Manufacture of nuclear weapons and bombs
- Measuring the level of food in canned and packaged food
- Gauging the thickness of thin metal and paper sheets
- Preservation of food stuffs

5. (a) In group 1 because it <u>has one valence electron in its outermost energy level. In group</u> (VII)

- _It lacks one electron to attain a duplet structure like group (VII) elements.
- (b) Bond covalent √ 1

Structure – giant atomic structure/giant covalent structure. √ 1

- (c) **B** or **C** \vee 1
- (d) Alkaline earth metals V 1
- (e) (i) Atomic radius of **B** is larger than that of **EV** 1

 Effective nuclear charge of **E** is greater than that of **B.** wtte V 1
- (ii) Electrical conductivity of elements **E** and **H** (2mks)

E is a good conductor /conductor $\sqrt{1/2}$ has delocalized electrons.

H is non-conductor $\sqrt{2}$ exists as a molecule (gas) $\sqrt{2}$

- (f) (i) pH of solution of C is higher \lor 1than that of Sodium chloride solution of C is alkaline \lor ½ while Sodium chloride solution is neutral \lor ½
- (ii) Used in street lights/fluorescent tubes/weather balloons /arc-welding V 1 (any one)
- 6. (a) The blue colour of solution fades /changes from blue to colourless Brown solid deposited 1/2
 - (b) i) No. of moles that reacted Zn = 65

$$0.65 \quad \sqrt{2} = 0.01 \text{moles} \qquad \sqrt{2}$$

(ii) The no. of moles that was displaced from the solution (Cu = 64)

(iii) The mole ratio of Zn: Cu

(c)
$$Cu^{2+}_{(a\alpha)} + Zn_{(s)} \longrightarrow Cu_{(s)} + Zn^{2+}_{(a\alpha)} / CuSO_{4(a\alpha)} + Zn_{(s)} \longrightarrow Cu_{(s)} + ZnSO_{4(a\alpha)}$$

- - (ii) 1 mole = 205.8 Kj

0.01 moles = 205.8 x 0.01
$$\sqrt{2}$$

= 2.059kJ $\sqrt{2}$
Mass of solution = 20cm³ x 1g/cm³
= 20g $\sqrt{2}$
H = mc $\Delta\theta$
 $\Delta\theta$ = mc $\Delta\theta$
 $\Delta\theta$ = mc $\Delta\theta$
 $\Delta\theta$ = $\frac{H}{2.05kJ}$ $\sqrt{1}$
 $20g \times 4.2Jg^{-1}k^{-1}$

7. (a) (i) Mixture of brine (concentrated NaCl) and Ammonia $\,\,$ $\,$ $\,$ 1

 $\Delta\theta = 24.5k$

(ii) $NaCl_{(aq)} + NH_{3(g)} + H_2O_{(l)} + CO_{2(g)} \rightarrow NaHCO_{3(s)} + NH_4Cl_{(aq)}$ $\vee 1$ - $\frac{1}{2}$ for wrong or missing states

٧ ½

- (b) (i) Manufacture of glass √½
 - (ii) Softening of water √½
- (c) (i) Calcium oxide $\lor 1$
 - (ii) Calcium Carbonate decomposes on heating to give CO_{2(g)}
- (d) $2NaHCO_{3(s)} \rightarrow Na_2CO_{3(s)} + CO_{2(g)} + H_2O_{(l)}$
- (e) Ammonia V ½ and Carbon(IV) oxide V ½